These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 17105187)
1. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Afriat L; Roodveldt C; Manco G; Tawfik DS Biochemistry; 2006 Nov; 45(46):13677-86. PubMed ID: 17105187 [TBL] [Abstract][Full Text] [Related]
2. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Afriat-Jurnou L; Jackson CJ; Tawfik DS Biochemistry; 2012 Aug; 51(31):6047-55. PubMed ID: 22809311 [TBL] [Abstract][Full Text] [Related]
3. Lactonases with organophosphatase activity: structural and evolutionary perspectives. Draganov DI Chem Biol Interact; 2010 Sep; 187(1-3):370-2. PubMed ID: 20122908 [TBL] [Abstract][Full Text] [Related]
4. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
5. Hyperthermophilic phosphotriesterases/lactonases for the environment and human health. Mandrich L; Merone L; Manco G Environ Technol; 2010 Sep; 31(10):1115-27. PubMed ID: 20718294 [TBL] [Abstract][Full Text] [Related]
6. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Roodveldt C; Tawfik DS Biochemistry; 2005 Sep; 44(38):12728-36. PubMed ID: 16171387 [TBL] [Abstract][Full Text] [Related]
7. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Chow JY; Wu L; Yew WS Biochemistry; 2009 May; 48(20):4344-53. PubMed ID: 19374350 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a phosphotriesterase-like lactonase from the hyperthermoacidophilic crenarchaeon Vulcanisaeta moutnovskia. Kallnik V; Bunescu A; Sayer C; Bräsen C; Wohlgemuth R; Littlechild J; Siebers B J Biotechnol; 2014 Nov; 190():11-7. PubMed ID: 24858677 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of the phosphotriesterase from M. tuberculosis, another member of phosphotriesterase-like lactonase family. Zhang L; Wang H; Liu X; Zhou W; Rao Z Biochem Biophys Res Commun; 2019 Mar; 510(2):224-229. PubMed ID: 30704759 [TBL] [Abstract][Full Text] [Related]
11. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. Bzdrenga J; Hiblot J; Gotthard G; Champion C; Elias M; Chabriere E BMC Res Notes; 2014 Jun; 7():333. PubMed ID: 24894602 [TBL] [Abstract][Full Text] [Related]
12. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180 [TBL] [Abstract][Full Text] [Related]
13. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Porzio E; Merone L; Mandrich L; Rossi M; Manco G Biochimie; 2007 May; 89(5):625-36. PubMed ID: 17337320 [TBL] [Abstract][Full Text] [Related]
14. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. Hiblot J; Gotthard G; Chabriere E; Elias M PLoS One; 2012; 7(10):e47028. PubMed ID: 23071703 [TBL] [Abstract][Full Text] [Related]
15. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Luo XJ; Kong XD; Zhao J; Chen Q; Zhou J; Xu JH Biotechnol Bioeng; 2014 Oct; 111(10):1920-30. PubMed ID: 24771278 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358 [TBL] [Abstract][Full Text] [Related]
17. Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Liu D; Thomas PW; Momb J; Hoang QQ; Petsko GA; Ringe D; Fast W Biochemistry; 2007 Oct; 46(42):11789-99. PubMed ID: 17900178 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Hawwa R; Aikens J; Turner RJ; Santarsiero BD; Mesecar AD Arch Biochem Biophys; 2009 Aug; 488(2):109-20. PubMed ID: 19615330 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study of the phosphotriesterase reaction mechanism. Chen SL; Fang WH; Himo F J Phys Chem B; 2007 Feb; 111(6):1253-5. PubMed ID: 17253743 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia. Hiblot J; Bzdrenga J; Champion C; Chabriere E; Elias M Sci Rep; 2015 Feb; 5():8372. PubMed ID: 25670483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]