These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 17105205)
1. Iron as a bound secondary electron donor in modified bacterial reaction centers. Kálmán L; LoBrutto R; Williams JC; Allen JP Biochemistry; 2006 Nov; 45(46):13869-74. PubMed ID: 17105205 [TBL] [Abstract][Full Text] [Related]
2. Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers. Kálmán L; Williams JC; Allen JP Biochemistry; 2011 Apr; 50(16):3310-20. PubMed ID: 21375274 [TBL] [Abstract][Full Text] [Related]
3. Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Kálmán L; Thielges MC; Williams JC; Allen JP Biochemistry; 2005 Oct; 44(40):13266-73. PubMed ID: 16201752 [TBL] [Abstract][Full Text] [Related]
4. Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides. Kálmán L; LoBrutto R; Allen JP; Williams JC Biochemistry; 2003 Sep; 42(37):11016-22. PubMed ID: 12974637 [TBL] [Abstract][Full Text] [Related]
5. Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Thielges M; Uyeda G; Cámara-Artigas A; Kálmán L; Williams JC; Allen JP Biochemistry; 2005 May; 44(20):7389-94. PubMed ID: 15895982 [TBL] [Abstract][Full Text] [Related]
6. Evidence for delocalized anticooperative flash induced proton binding as revealed by mutants at the M266His iron ligand in bacterial reaction centers. Cheap H; Tandori J; Derrien V; Benoit M; de Oliveira P; Koepke J; Lavergne J; Maroti P; Sebban P Biochemistry; 2007 Apr; 46(15):4510-21. PubMed ID: 17378585 [TBL] [Abstract][Full Text] [Related]
7. Binding of oxidized and reduced cytochrome c2 to photosynthetic reaction centers: plasmon-waveguide resonance spectroscopy. Devanathan S; Salamon Z; Tollin G; Fitch J; Meyer TE; Cusanovich MA Biochemistry; 2004 Dec; 43(51):16405-15. PubMed ID: 15610035 [TBL] [Abstract][Full Text] [Related]
8. Dependence of tyrosine oxidation in highly oxidizing bacterial reaction centers on pH and free-energy difference. Kálmán L; Narváez AJ; LoBrutto R; Williams JC; Allen JP Biochemistry; 2004 Oct; 43(40):12905-12. PubMed ID: 15461463 [TBL] [Abstract][Full Text] [Related]
9. Uncoupling of electron and proton transfers in the photocycle of bacterial reaction centers under high light intensity. Gerencsér L; Maróti P Biochemistry; 2006 May; 45(17):5650-62. PubMed ID: 16634646 [TBL] [Abstract][Full Text] [Related]
10. Effect of anions on the binding and oxidation of divalent manganese and iron in modified bacterial reaction centers. Tang K; Williams JC; Allen JP; Kálmán L Biophys J; 2009 Apr; 96(8):3295-304. PubMed ID: 19383473 [TBL] [Abstract][Full Text] [Related]
11. Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Kálmán L; LoBrutto R; Narváez AJ; Williams JC; Allen JP Biochemistry; 2003 Nov; 42(45):13280-6. PubMed ID: 14609339 [TBL] [Abstract][Full Text] [Related]
12. pH dependence of the donor side reactions in Ca2+-depleted photosystem II. Styring S; Feyziyev Y; Mamedov F; Hillier W; Babcock GT Biochemistry; 2003 May; 42(20):6185-92. PubMed ID: 12755621 [TBL] [Abstract][Full Text] [Related]
13. Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. Poluektov OG; Paschenko SV; Utschig LM; Lakshmi KV; Thurnauer MC J Am Chem Soc; 2005 Aug; 127(34):11910-1. PubMed ID: 16117508 [TBL] [Abstract][Full Text] [Related]
14. ESR signal of the iron-sulfur center F(X) and its function in the homodimeric reaction center of Heliobacterium modesticaldum. Miyamoto R; Iwaki M; Mino H; Harada J; Itoh S; Oh-Oka H Biochemistry; 2006 May; 45(20):6306-16. PubMed ID: 16700542 [TBL] [Abstract][Full Text] [Related]
15. Electronic structure of the Mn-cofactor of modified bacterial reaction centers measured by electron paramagnetic resonance and electron spin echo envelope modulation spectroscopies. Tufts AA; Flores M; Olson TL; Williams JC; Allen JP Photosynth Res; 2014 May; 120(1-2):207-20. PubMed ID: 23868400 [TBL] [Abstract][Full Text] [Related]
16. Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Narváez AJ; LoBrutto R; Allen JP; Williams JC Biochemistry; 2004 Nov; 43(45):14379-84. PubMed ID: 15533042 [TBL] [Abstract][Full Text] [Related]
17. The S0 state of the water oxidizing complex in photosystem II: pH dependence of the EPR split signal induction and mechanistic implications. Sjöholm J; Havelius KG; Mamedov F; Styring S Biochemistry; 2009 Oct; 48(40):9393-404. PubMed ID: 19736946 [TBL] [Abstract][Full Text] [Related]
18. Resolution and reconstitution of a bound Fe-S protein from the photosynthetic reaction center of Heliobacterium modesticaldum. Heinnickel M; Shen G; Agalarov R; Golbeck JH Biochemistry; 2005 Jul; 44(29):9950-60. PubMed ID: 16026168 [TBL] [Abstract][Full Text] [Related]
19. Mutation of arginine 357 of the CP43 protein of photosystem II severely impairs the catalytic S-state cycle of the H2O oxidation complex. Hwang HJ; Dilbeck P; Debus RJ; Burnap RL Biochemistry; 2007 Oct; 46(43):11987-97. PubMed ID: 17915952 [TBL] [Abstract][Full Text] [Related]
20. Structure of the charge separated state P865(+)Q(A)- in the photosynthetic reaction centers of Rhodobacter sphaeroides by quantum beat oscillations and high-field electron paramagnetic resonance: evidence for light-induced Q(A)- reorientation. Heinen U; Utschig LM; Poluektov OG; Link G; Ohmes E; Kothe G J Am Chem Soc; 2007 Dec; 129(51):15935-46. PubMed ID: 18052250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]