These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17105207)

  • 1. Probing the chemical steps of nitroalkane oxidation catalyzed by 2-nitropropane dioxygenase with solvent viscosity, pH, and substrate kinetic isotope effects.
    Francis K; Gadda G
    Biochemistry; 2006 Nov; 45(46):13889-98. PubMed ID: 17105207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of a flavosemiquinone in the enzymatic oxidation of nitroalkanes catalyzed by 2-nitropropane dioxygenase.
    Francis K; Russell B; Gadda G
    J Biol Chem; 2005 Feb; 280(7):5195-204. PubMed ID: 15582992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inflated kinetic isotope effects in the branched mechanism of Neurospora crassa 2-nitropropane dioxygenase.
    Francis K; Gadda G
    Biochemistry; 2009 Mar; 48(11):2403-10. PubMed ID: 19199786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nonoxidative conversion of nitroethane to ethylnitronate in Neurospora crassa 2-nitropropane dioxygenase is catalyzed by histidine 196.
    Francis K; Gadda G
    Biochemistry; 2008 Sep; 47(35):9136-44. PubMed ID: 18690716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a transient peroxynitro acid in the reaction catalyzed by nitronate monooxygenase with propionate 3-nitronate.
    Smitherman C; Gadda G
    Biochemistry; 2013 Apr; 52(15):2694-704. PubMed ID: 23530838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of pH and kinetic isotope effects to dissect the effects of substrate size on binding and catalysis by nitroalkane oxidase.
    Gadda G; Choe DY; Fitzpatrick PF
    Arch Biochem Biophys; 2000 Oct; 382(1):138-44. PubMed ID: 11051107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of alkyl nitronates catalyzed by 2-nitropropane dioxygenase from Hansenula mrakii.
    Mijatovic S; Gadda G
    Arch Biochem Biophys; 2008 May; 473(1):61-8. PubMed ID: 18329375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism and substrate specificity of nitroalkane oxidase.
    Heasley CJ; Fitzpatrick PF
    Biochem Biophys Res Commun; 1996 Aug; 225(1):6-10. PubMed ID: 8769086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the contribution of the positively charged headgroup of choline to substrate binding and catalysis in the reaction catalyzed by choline oxidase.
    Gadda G; Fan F; Hoang JV
    Arch Biochem Biophys; 2006 Jul; 451(2):182-7. PubMed ID: 16713988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis.
    Gadda G; Francis K
    Arch Biochem Biophys; 2010 Jan; 493(1):53-61. PubMed ID: 19577534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of anionic nitroalkanes by flavoenzymes, and participation of superoxide anion in the catalysis.
    Kido T; Soda K
    Arch Biochem Biophys; 1984 Nov; 234(2):468-75. PubMed ID: 6149727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-chemical proton-dependent steps prior to O2-activation limit Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase (MDO) catalysis.
    Crowell JK; Sardar S; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2016 Aug; 604():86-94. PubMed ID: 27311613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent isotope and viscosity effects on the steady-state kinetics of the flavoprotein nitroalkane oxidase.
    Gadda G; Fitzpatrick PF
    FEBS Lett; 2013 Sep; 587(17):2785-9. PubMed ID: 23660407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the catalytic mechanism of choline oxidase.
    Fan F; Gadda G
    J Am Chem Soc; 2005 Feb; 127(7):2067-74. PubMed ID: 15713082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.