These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17105249)

  • 1. A Mo(VI) alkylidyne complex with polyhedral oligomeric silsesquioxane ligands: homogeneous analogue of a silica-supported alkyne metathesis catalyst.
    Cho HM; Weissman H; Wilson SR; Moore JS
    J Am Chem Soc; 2006 Nov; 128(46):14742-3. PubMed ID: 17105249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly active trialkoxymolybdenum(VI) alkylidyne catalysts synthesized by a reductive recycle strategy.
    Zhang W; Kraft S; Moore JS
    J Am Chem Soc; 2004 Jan; 126(1):329-35. PubMed ID: 14709099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous polyhedral oligomeric silsesquioxane (POSS)-supported Pd-diimine complex and synthesis of polyethylenes end-tethered with a POSS nanoparticle via ethylene "living" polymerization.
    Zhang Y; Ye Z
    Chem Commun (Camb); 2008 Mar; (10):1178-80. PubMed ID: 18309409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic applications with use of a silica-supported alkyne metathesis catalyst.
    Cho HM; Weissman H; Moore JS
    J Org Chem; 2008 Jun; 73(11):4256-8. PubMed ID: 18462001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.
    Zhang L; Abbenhuis HC; Gerritsen G; Bhriain NN; Magusin PC; Mezari B; Han W; van Santen RA; Yang Q; Li C
    Chemistry; 2007; 13(4):1210-21. PubMed ID: 17066470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface characteristics of polyhedral oligomeric silsesquioxane modified clay and its application in polymerization of macrocyclic polyester oligomers.
    Wan C; Zhao F; Bao X; Kandasubramanian B; Duggan M
    J Phys Chem B; 2008 Sep; 112(38):11915-22. PubMed ID: 18761434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Active Multidentate Ligand-Based Alkyne Metathesis Catalysts.
    Du Y; Yang H; Zhu C; Ortiz M; Okochi KD; Shoemaker R; Jin Y; Zhang W
    Chemistry; 2016 Jun; 22(23):7959-63. PubMed ID: 27113640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An OCO3- trianionic pincer tungsten(VI) alkylidyne: rational design of a highly active alkyne polymerization catalyst.
    Sarkar S; McGowan KP; Kuppuswamy S; Ghiviriga I; Abboud KA; Veige AS
    J Am Chem Soc; 2012 Mar; 134(10):4509-12. PubMed ID: 22352966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ generation of active sites in olefin metathesis.
    Amakawa K; Wrabetz S; Kröhnert J; Tzolova-Müller G; Schlögl R; Trunschke A
    J Am Chem Soc; 2012 Jul; 134(28):11462-73. PubMed ID: 22703234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and Binding Studies Reveal Cooperativity and Off-Cycle Competition for H-Bonding Catalysis with Silsesquioxane Silanols.
    Jagannathan JR; Diemoz KM; Targos K; Fettinger JC; Franz AK
    Chemistry; 2019 Nov; 25(65):14953-14958. PubMed ID: 31448459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHR-insertion (R=H, CH3) into cyclohexyl-substituted silsesquioxanes: reactivity and decomposition studies.
    Ward AJ; Lesic RA; Fisher K; Proschogo N; Fábos V; Masters AF; Maschmeyer T
    Chemistry; 2014 Nov; 20(46):15169-77. PubMed ID: 25178182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical new silyloxy-based alkyne metathesis catalysts with optimized activity and selectivity profiles.
    Heppekausen J; Stade R; Goddard R; Fürstner A
    J Am Chem Soc; 2010 Aug; 132(32):11045-57. PubMed ID: 20698671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corner capping of silsesquioxane cages by chemical warfare agent simulants.
    Ferguson-McPherson MK; Low ER; Esker AR; Morris JR
    Langmuir; 2005 Nov; 21(24):11226-31. PubMed ID: 16285795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum Alkylidyne Complexes with Tripodal Silanolate Ligands: The Next Generation of Alkyne Metathesis Catalysts.
    Hillenbrand J; Leutzsch M; Fürstner A
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15690-15696. PubMed ID: 31449713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organometallic Chemistry of Transition Metal Alkylidyne Complexes Centered at Metathesis Reactions.
    Cui M; Jia G
    J Am Chem Soc; 2022 Jul; 144(28):12546-12566. PubMed ID: 35793547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly active molybdenum-alkylidyne catalysts for alkyne metathesis: synthesis from the nitrides by metathesis with alkynes.
    Gdula RL; Johnson MJ
    J Am Chem Soc; 2006 Aug; 128(30):9614-5. PubMed ID: 16866499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-supported oligomeric Grubbs/Hoveyda-type Ru-carbene complexes for ring-closing metathesis.
    Chen SW; Kim JH; Song CE; Lee SG
    Org Lett; 2007 Sep; 9(19):3845-8. PubMed ID: 17696439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient catalytic alkyne metathesis with a fluoroalkoxy-supported ditungsten(III) complex.
    Ehrhorn H; Schlösser J; Bockfeld D; Tamm M
    Beilstein J Org Chem; 2018; 14():2425-2434. PubMed ID: 30344767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introducing a podand motif to alkyne metathesis catalyst design: a highly active multidentate molybdenum(VI) catalyst that resists alkyne polymerization.
    Jyothish K; Zhang W
    Angew Chem Int Ed Engl; 2011 Apr; 50(15):3435-8. PubMed ID: 21394862
    [No Abstract]   [Full Text] [Related]  

  • 20. Alkyne Metathesis with d
    Cui M; Sung HHY; Williams ID; Jia G
    J Am Chem Soc; 2022 Apr; 144(14):6349-6360. PubMed ID: 35377156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.