BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17105276)

  • 1. Oxidative amide synthesis and N-terminal alpha-amino group ligation of peptides in aqueous medium.
    Chan WK; Ho CM; Wong MK; Che CM
    J Am Chem Soc; 2006 Nov; 128(46):14796-7. PubMed ID: 17105276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct amidation of aldoses and decarboxylative amidation of alpha-keto acids: an efficient conjugation method for unprotected carbohydrate molecules.
    Cho CC; Liu JN; Chien CH; Shie JJ; Chen YC; Fang JM
    J Org Chem; 2009 Feb; 74(4):1549-56. PubMed ID: 19159243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications.
    Marinzi C; Offer J; Longhi R; Dawson PE
    Bioorg Med Chem; 2004 May; 12(10):2749-57. PubMed ID: 15110856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones.
    Tam JP; Yu Q
    Biopolymers; 1998 Oct; 46(5):319-27. PubMed ID: 9754028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis of C-terminal arylamides of amino acids and peptides.
    Nuijens T; Cusan C; Kruijtzer JA; Rijkers DT; Liskamp RM; Quaedflieg PJ
    J Org Chem; 2009 Aug; 74(15):5145-50. PubMed ID: 19534522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-deficient alkynes as cleavable reagents for the modification of cysteine-containing peptides in aqueous medium.
    Shiu HY; Chan TC; Ho CM; Liu Y; Wong MK; Che CM
    Chemistry; 2009; 15(15):3839-50. PubMed ID: 19229937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water.
    Cho SH; Yoo EJ; Bae I; Chang S
    J Am Chem Soc; 2005 Nov; 127(46):16046-7. PubMed ID: 16287290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoretentive synthesis and chemoselective amide-forming ligations of C-terminal peptide alpha-ketoacids.
    Ju L; Lippert AR; Bode JW
    J Am Chem Soc; 2008 Apr; 130(13):4253-5. PubMed ID: 18335941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoselective N-acylation via condensations of N-(benzoyloxy)amines and alpha-ketophosphonic acids under aqueous conditions.
    Arora JS; Kaur N; Phanstiel O
    J Org Chem; 2008 Aug; 73(16):6182-6. PubMed ID: 18620456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nondestructive, colorimetric monitoring of amines and thiols on a solid support.
    Yang SJ; Tian XZ; Shin I
    Org Lett; 2009 Aug; 11(15):3438-41. PubMed ID: 19583201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel thioester reagents afford efficient and specific S-acylation of unprotected peptides under mild conditions in aqueous solution.
    Sang SL; Silvius JR
    J Pept Res; 2005 Oct; 66(4):169-80. PubMed ID: 16138855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodomesitylene-catalyzed oxidative cleavage of carbon-carbon double and triple bonds using m-chloroperbenzoic acid as a terminal oxidant.
    Miyamoto K; Sei Y; Yamaguchi K; Ochiai M
    J Am Chem Soc; 2009 Feb; 131(4):1382-3. PubMed ID: 19133783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-catalyzed aerobic oxidative amidation of terminal alkynes: efficient synthesis of ynamides.
    Hamada T; Ye X; Stahl SS
    J Am Chem Soc; 2008 Jan; 130(3):833-5. PubMed ID: 18166058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging methods in amide- and peptide-bond formation.
    Bode JW
    Curr Opin Drug Discov Devel; 2006 Nov; 9(6):765-75. PubMed ID: 17117685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoselective C-H bond activation: ligand and solvent free iron-catalyzed oxidative C-C cross-coupling of tertiary amines with terminal alkynes. Reaction scope and mechanism.
    Volla CM; Vogel P
    Org Lett; 2009 Apr; 11(8):1701-4. PubMed ID: 19296636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influence of steric crowding on the electrochemical reduction of amide groups in a pyridylcarboxamide seriesapplication to rote ction of amines in peptide synthesis].
    Auzeil N
    Ann Pharm Fr; 1999 May; 57(3):255-65. PubMed ID: 10427862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New palladium-catalyzed aerobic oxidative cleavage and cyclization of N-aryl peptide derivatives.
    El Kaïm L; Gamez-Montaño R; Grimaud L; Ibarra-Rivera T
    Chem Commun (Camb); 2008 Mar; (11):1350-2. PubMed ID: 18389130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver-catalyzed azaGly ligation. Application to the synthesis of azapeptides and of lipid-peptide conjugates.
    Ollivier N; Besret S; Blanpain A; Melnyk O
    Bioconjug Chem; 2009 Jul; 20(7):1397-403. PubMed ID: 19522459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-phase peptide synthesis using nanoparticulate amino acids in water.
    Hojo K; Ichikawa H; Maeda M; Kida S; Fukumori Y; Kawasaki K
    J Pept Sci; 2007 Jul; 13(7):493-7. PubMed ID: 17554805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines.
    Balagam B; Richardson DE
    Inorg Chem; 2008 Feb; 47(3):1173-8. PubMed ID: 18179203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.