BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17105377)

  • 1. Chromatin modification and muscle differentiation.
    Yahi H; Philipot O; Guasconi V; Fritsch L; Ait-Si-Ali S
    Expert Opin Ther Targets; 2006 Dec; 10(6):923-34. PubMed ID: 17105377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal regulation of chromatin during myoblast differentiation.
    Harada A; Ohkawa Y; Imbalzano AN
    Semin Cell Dev Biol; 2017 Dec; 72():77-86. PubMed ID: 29079444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry.
    Boyarchuk E; Robin P; Fritsch L; Joliot V; Ait-Si-Ali S
    J Vis Exp; 2016 May; (111):. PubMed ID: 27286495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic regulation of myogenesis.
    Perdiguero E; Sousa-Victor P; Ballestar E; Muñoz-Cánoves P
    Epigenetics; 2009 Nov; 4(8):541-50. PubMed ID: 20009536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unexpected role of TAFs and TRFs in skeletal muscle differentiation: switching core promoter complexes.
    Deato MD; Tjian R
    Cold Spring Harb Symp Quant Biol; 2008; 73():217-25. PubMed ID: 19022758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling to the chromatin during skeletal myogenesis: novel targets for pharmacological modulation of gene expression.
    Forcales SV; Puri PL
    Semin Cell Dev Biol; 2005; 16(4-5):596-611. PubMed ID: 16129633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of skeletal muscle stem cells through epigenetic mechanisms.
    Sousa-Victor P; Muñoz-Cánoves P; Perdiguero E
    Toxicol Mech Methods; 2011 May; 21(4):334-42. PubMed ID: 21495871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.
    Langlois S; Cowan KN
    Adv Exp Med Biol; 2017; 925():57-73. PubMed ID: 27518505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoglycin inhibition by microRNA miR-155 impairs myogenesis.
    Freire PP; Cury SS; de Oliveira G; Fernandez GJ; Moraes LN; da Silva Duran BO; Ferreira JH; Fuziwara CS; Kimura ET; Dal-Pai-Silva M; Carvalho RF
    PLoS One; 2017; 12(11):e0188464. PubMed ID: 29161332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis.
    Wu J; Yue B
    Biomed Pharmacother; 2024 May; 174():116563. PubMed ID: 38583341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of lncRNAs and circRNAs in regulating skeletal muscle development.
    Chen R; Lei S; Jiang T; Zeng J; Zhou S; She Y
    Acta Physiol (Oxf); 2020 Feb; 228(2):e13356. PubMed ID: 31365949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of skeletal myogenesis.
    Saccone V; Puri PL
    Organogenesis; 2010; 6(1):48-53. PubMed ID: 20592865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tcf12 is required to sustain myogenic genes synergism with MyoD by remodelling the chromatin landscape.
    Wang S; Liao Y; Zhang H; Jiang Y; Peng Z; Ren R; Li X; Wang H
    Commun Biol; 2022 Nov; 5(1):1201. PubMed ID: 36352000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation.
    Wilson EM; Tureckova J; Rotwein P
    Mol Biol Cell; 2004 Feb; 15(2):497-505. PubMed ID: 14595115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epigenetic network regulating muscle development and regeneration.
    Palacios D; Puri PL
    J Cell Physiol; 2006 Apr; 207(1):1-11. PubMed ID: 16155926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular RNAs in myogenesis.
    Das A; Das A; Das D; Abdelmohsen K; Panda AC
    Biochim Biophys Acta Gene Regul Mech; 2020 Apr; 1863(4):194372. PubMed ID: 30946990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myogenesis in the genomics era.
    Blais A
    J Mol Biol; 2015 Jun; 427(11):2023-38. PubMed ID: 25687962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.