These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17105377)

  • 1. Chromatin modification and muscle differentiation.
    Yahi H; Philipot O; Guasconi V; Fritsch L; Ait-Si-Ali S
    Expert Opin Ther Targets; 2006 Dec; 10(6):923-34. PubMed ID: 17105377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of skeletal muscle development and differentiation.
    Bharathy N; Ling BM; Taneja R
    Subcell Biochem; 2013; 61():139-50. PubMed ID: 23150250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
    Sincennes MC; Brun CE; Rudnicki MA
    Stem Cells Transl Med; 2016 Mar; 5(3):282-90. PubMed ID: 26798058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal regulation of chromatin during myoblast differentiation.
    Harada A; Ohkawa Y; Imbalzano AN
    Semin Cell Dev Biol; 2017 Dec; 72():77-86. PubMed ID: 29079444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry.
    Boyarchuk E; Robin P; Fritsch L; Joliot V; Ait-Si-Ali S
    J Vis Exp; 2016 May; (111):. PubMed ID: 27286495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic regulation of myogenesis.
    Perdiguero E; Sousa-Victor P; Ballestar E; Muñoz-Cánoves P
    Epigenetics; 2009 Nov; 4(8):541-50. PubMed ID: 20009536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unexpected role of TAFs and TRFs in skeletal muscle differentiation: switching core promoter complexes.
    Deato MD; Tjian R
    Cold Spring Harb Symp Quant Biol; 2008; 73():217-25. PubMed ID: 19022758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling to the chromatin during skeletal myogenesis: novel targets for pharmacological modulation of gene expression.
    Forcales SV; Puri PL
    Semin Cell Dev Biol; 2005; 16(4-5):596-611. PubMed ID: 16129633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of skeletal muscle stem cells through epigenetic mechanisms.
    Sousa-Victor P; Muñoz-Cánoves P; Perdiguero E
    Toxicol Mech Methods; 2011 May; 21(4):334-42. PubMed ID: 21495871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.
    Langlois S; Cowan KN
    Adv Exp Med Biol; 2017; 925():57-73. PubMed ID: 27518505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoglycin inhibition by microRNA miR-155 impairs myogenesis.
    Freire PP; Cury SS; de Oliveira G; Fernandez GJ; Moraes LN; da Silva Duran BO; Ferreira JH; Fuziwara CS; Kimura ET; Dal-Pai-Silva M; Carvalho RF
    PLoS One; 2017; 12(11):e0188464. PubMed ID: 29161332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis.
    Wu J; Yue B
    Biomed Pharmacother; 2024 May; 174():116563. PubMed ID: 38583341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of lncRNAs and circRNAs in regulating skeletal muscle development.
    Chen R; Lei S; Jiang T; Zeng J; Zhou S; She Y
    Acta Physiol (Oxf); 2020 Feb; 228(2):e13356. PubMed ID: 31365949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of skeletal myogenesis.
    Saccone V; Puri PL
    Organogenesis; 2010; 6(1):48-53. PubMed ID: 20592865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interactions of proliferation and differentiation signaling pathways in myogenesis].
    Milewska M; Grabiec K; Grzelkowska-Kowalczyk K
    Postepy Hig Med Dosw (Online); 2014 May; 68():516-26. PubMed ID: 24864103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tcf12 is required to sustain myogenic genes synergism with MyoD by remodelling the chromatin landscape.
    Wang S; Liao Y; Zhang H; Jiang Y; Peng Z; Ren R; Li X; Wang H
    Commun Biol; 2022 Nov; 5(1):1201. PubMed ID: 36352000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation.
    Wilson EM; Tureckova J; Rotwein P
    Mol Biol Cell; 2004 Feb; 15(2):497-505. PubMed ID: 14595115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epigenetic network regulating muscle development and regeneration.
    Palacios D; Puri PL
    J Cell Physiol; 2006 Apr; 207(1):1-11. PubMed ID: 16155926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myogenesis in the genomics era.
    Blais A
    J Mol Biol; 2015 Jun; 427(11):2023-38. PubMed ID: 25687962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts.
    Watanabe TM; Higuchi S; Kawauchi K; Tsukasaki Y; Ichimura T; Fujita H
    Biochem Biophys Res Commun; 2012 Feb; 418(4):742-7. PubMed ID: 22306010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.