BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17105484)

  • 1. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines.
    Fernández M; Caballero J
    Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic Neural Networks and ensemble averaging.
    Fernández M; Carreiras MC; Marco JL; Caballero J
    J Enzyme Inhib Med Chem; 2006 Dec; 21(6):647-61. PubMed ID: 17252937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d]pyrimidine derivatives using artificial neural network ensembles.
    Fernández M; Tundidor-Camba A; Caballero J
    J Chem Inf Model; 2005; 45(6):1884-95. PubMed ID: 16309296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks.
    Caballero J; Garriga M; Fernández M
    Bioorg Med Chem; 2006 May; 14(10):3330-40. PubMed ID: 16442799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor.
    Fernández M; Caballero J
    J Mol Graph Model; 2006 Dec; 25(4):410-22. PubMed ID: 16574448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino Acid Sequence Autocorrelation vectors and ensembles of Bayesian-Regularized Genetic Neural Networks for prediction of conformational stability of human lysozyme mutants.
    Caballero J; Fernández L; Abreu JI; Fernández M
    J Chem Inf Model; 2006; 46(3):1255-68. PubMed ID: 16711745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase.
    Asadabadi EB; Abdolmaleki P; Barkooie SM; Jahandideh S; Rezaei MA
    Comput Biol Med; 2009 Dec; 39(12):1089-95. PubMed ID: 19854437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives.
    Fernández M; Caballero J
    Bioorg Med Chem; 2007 Sep; 15(18):6298-310. PubMed ID: 17590339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.
    Zhang S; Hou B; Yang H; Zuo Z
    Arch Pharm Res; 2016 May; 39(5):591-602. PubMed ID: 26832327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirements of pyrido[2,3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses.
    Caballero J; Fernández M; González-Nilo FD
    Bioorg Med Chem; 2008 Jun; 16(11):6103-15. PubMed ID: 18468903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network.
    Polley MJ; Winkler DA; Burden FR
    J Med Chem; 2004 Dec; 47(25):6230-8. PubMed ID: 15566293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein radial distribution function (P-RDF) and Bayesian-Regularized Genetic Neural Networks for modeling protein conformational stability: chymotrypsin inhibitor 2 mutants.
    Fernández M; Caballero J; Fernández L; Abreu JI; Garriga M
    J Mol Graph Model; 2007 Nov; 26(4):748-59. PubMed ID: 17569565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteochemometric modeling of the inhibition complexes of matrix metalloproteinases with N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives using topological autocorrelation interaction matrix and model ensemble averaging.
    Fernández M; Fernández L; Caballero J; Abreu JI; Reyes G
    Chem Biol Drug Des; 2008 Jul; 72(1):65-78. PubMed ID: 18554254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of methods for modeling quantitative structure-activity relationships.
    Sutherland JJ; O'Brien LA; Weaver DF
    J Med Chem; 2004 Oct; 47(22):5541-54. PubMed ID: 15481990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Bayesian neural network models of MHC class II peptide binding.
    Burden FR; Winkler DA
    J Mol Graph Model; 2005 Jun; 23(6):481-9. PubMed ID: 15878832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks.
    So SS; Karplus M
    J Med Chem; 1996 Mar; 39(7):1521-30. PubMed ID: 8691483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling blood-brain barrier partitioning using Bayesian neural nets.
    Winkler DA; Burden FR
    J Mol Graph Model; 2004 Jul; 22(6):499-505. PubMed ID: 15182809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling.
    Li J; Lei B; Liu H; Li S; Yao X; Liu M; Gramatica P
    J Comput Chem; 2008 Dec; 29(16):2636-47. PubMed ID: 18484640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of QSAR sets with a self-organizing map.
    Guha R; Serra JR; Jurs PC
    J Mol Graph Model; 2004 Sep; 23(1):1-14. PubMed ID: 15331049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSARs and activity predicting models for competitive inhibitors of adenosine deaminase.
    Sadat Hayatshahi SH; Abdolmaleki P; Ghiasi M; Safarian S
    FEBS Lett; 2007 Feb; 581(3):506-14. PubMed ID: 17250831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.