BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 17106065)

  • 1. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle.
    O'Leary MF; Hood DA
    J Appl Physiol (1985); 2008 Jul; 105(1):114-20. PubMed ID: 18450984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ; O'Leary MF; Chabi B; Wicks KL; Hood DA
    J Appl Physiol (1985); 2007 Mar; 102(3):1143-51. PubMed ID: 17122379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.
    Ljubicic V; Adhihetty PJ; Hood DA
    J Appl Physiol (1985); 2004 Sep; 97(3):976-83. PubMed ID: 15145919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli.
    Adhihetty PJ; Ljubicic V; Menzies KJ; Hood DA
    Am J Physiol Cell Physiol; 2005 Oct; 289(4):C994-C1001. PubMed ID: 15901602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions.
    Connor MK; Bezborodova O; Escobar CP; Hood DA
    J Appl Physiol (1985); 2000 May; 88(5):1601-6. PubMed ID: 10797119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle.
    Saleem A; Adhihetty PJ; Hood DA
    Physiol Genomics; 2009 Mar; 37(1):58-66. PubMed ID: 19106183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle.
    Chabi B; Ljubicic V; Menzies KJ; Huang JH; Saleem A; Hood DA
    Aging Cell; 2008 Jan; 7(1):2-12. PubMed ID: 18028258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile activity-induced adaptations in the mitochondrial protein import system.
    Takahashi M; Chesley A; Freyssenet D; Hood DA
    Am J Physiol; 1998 May; 274(5):C1380-7. PubMed ID: 9612226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
    Bezaire V; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated skeletal muscle apoptotic signaling following glutathione depletion.
    Dam AD; Mitchell AS; Rush JW; Quadrilatero J
    Apoptosis; 2012 Jan; 17(1):48-60. PubMed ID: 21947977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.
    Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L
    Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E749-58. PubMed ID: 19549794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased DNA fragmentation and apoptotic signaling in soleus muscle of hypertensive rats following 6 weeks of treadmill training.
    McMillan EM; Graham DA; Rush JW; Quadrilatero J
    J Appl Physiol (1985); 2012 Oct; 113(7):1048-57. PubMed ID: 22858629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle.
    Ljubicic V; Joseph AM; Adhihetty PJ; Huang JH; Saleem A; Uguccioni G; Hood DA
    Aging (Albany NY); 2009 Sep; 1(9):818-30. PubMed ID: 20157569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid.
    Tamilselvan J; Jayaraman G; Sivarajan K; Panneerselvam C
    Free Radic Biol Med; 2007 Dec; 43(12):1656-69. PubMed ID: 18037131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E195-204. PubMed ID: 18492778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial β-oxidation.
    Chen LL; Zhang HH; Zheng J; Hu X; Kong W; Hu D; Wang SX; Zhang P
    Metabolism; 2011 Nov; 60(11):1598-609. PubMed ID: 21632075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle.
    Yoshida Y; Holloway GP; Ljubicic V; Hatta H; Spriet LL; Hood DA; Bonen A
    J Physiol; 2007 Aug; 582(Pt 3):1317-35. PubMed ID: 17556391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.