These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17106479)

  • 1. Photonic bandgap calculations with Dirichlet-to-Neumann maps.
    Yuan J; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3217-22. PubMed ID: 17106479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps.
    Xie H; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1606-14. PubMed ID: 19568296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells.
    Li S; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2438-42. PubMed ID: 17621348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Dirichlet-to-Neumann map method for scattering by circular cylinders on a lattice.
    She S; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1999-2004. PubMed ID: 23201958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing Photonic Crystal Defect Modes by Dirichlet-to-Neumann Maps.
    Li S; Lu YY
    Opt Express; 2007 Oct; 15(22):14454-66. PubMed ID: 19550723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps.
    Hu Z; Lu YY
    Opt Express; 2008 Oct; 16(22):17383-99. PubMed ID: 18958021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chebyshev collocation Dirichlet-to-Neumann map method for diffraction gratings.
    Song D; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2009 Sep; 26(9):1980-8. PubMed ID: 19721683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings.
    David S; Chelnokov A; Lourtioz JM
    Opt Lett; 2000 Jul; 25(14):1001-3. PubMed ID: 18064253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient analysis of periodic dielectric waveguides using Dirichlet-to-Neumann maps.
    Tausch J; Butler J
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1120-8. PubMed ID: 12049349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method.
    Luo M; Liu QH
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1598-605. PubMed ID: 19568295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency.
    Luo M; Liu QH
    J Opt Soc Am A Opt Image Sci Vis; 2010 Aug; 27(8):1878-84. PubMed ID: 20686594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical mode expansion method for analyzing elliptic cylindrical objects in a layered background.
    Shi H; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):630-6. PubMed ID: 26366773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction.
    Davanco M; Urzhumov Y; Shvets G
    Opt Express; 2007 Jul; 15(15):9681-91. PubMed ID: 19547317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis.
    Li S; Lin H; Meng F; Moss D; Huang X; Jia B
    Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observation of wave localization at the Dirac frequency in a two-dimensional photonic crystal microcavity.
    Hu L; Xie K; Hu Z; Mao Q; Xia J; Jiang H; Zhang J; Wen J; Chen J
    Opt Express; 2018 Apr; 26(7):8213-8223. PubMed ID: 29715790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.