BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17106676)

  • 41. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Sep; 22(5):1007-15. PubMed ID: 21416334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surfactant-enhanced bioremediation of DDTs and PAHs in contaminated farmland soil.
    Wang X; Sun L; Wang H; Wu H; Chen S; Zheng X
    Environ Technol; 2018 Jul; 39(13):1733-1744. PubMed ID: 28562189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions.
    Wong JW; Fang M; Zhao Z; Xing B
    J Environ Qual; 2004; 33(6):2015-25. PubMed ID: 15537923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Advances in studies on the effect of surfactant on bioavailability of polycylcic aromatic hydrocarbons (PAHs) in soil].
    Jiang X; Jing X; Gao X; Ou Z
    Ying Yong Sheng Tai Xue Bao; 2002 Sep; 13(9):1179-86. PubMed ID: 12561188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons.
    Johnsen AR; Karlson U
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):452-9. PubMed ID: 14716468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PAHs soil decontamination in two steps: desorption and electrochemical treatment.
    Alcántara MT; Gómez J; Pazos M; Sanromán MA
    J Hazard Mater; 2009 Jul; 166(1):462-8. PubMed ID: 19121891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria.
    Kumari S; Regar RK; Manickam N
    Bioresour Technol; 2018 Apr; 254():174-179. PubMed ID: 29413920
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene.
    Bramwell DP; Laha S
    Biodegradation; 2000; 11(4):263-77. PubMed ID: 11432584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Microbial breakdown of polycyclic aromatic hydrocarbons (author's transl)].
    Groenewegen D; Stolp H
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):225-32. PubMed ID: 998053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth.
    Rehmann K; Hertkorn N; Kettrup AA
    Microbiology (Reading); 2001 Oct; 147(Pt 10):2783-2794. PubMed ID: 11577157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis.
    Mueller JG; Chapman PJ; Blattmann BO; Pritchard PH
    Appl Environ Microbiol; 1990 Apr; 56(4):1079-86. PubMed ID: 2339870
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems.
    Ahmad Z; Zhang X; Imran M; Zhong H; Andleeb S; Zulekha R; Liu G; Ahmad I; Coulon F
    Ecotoxicol Environ Saf; 2021 Jan; 207():111514. PubMed ID: 33254394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.
    Zhao Z; Wong JW
    Environ Technol; 2009 Mar; 30(3):291-9. PubMed ID: 19438062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation.
    Piskonen R; Itävaara M
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):627-34. PubMed ID: 15293029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions.
    Mesbaiah FZ; Eddouaouda K; Badis A; Chebbi A; Hentati D; Sayadi S; Chamkha M
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14221-30. PubMed ID: 27053051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation.
    Eddouaouda K; Mnif S; Badis A; Younes SB; Cherif S; Ferhat S; Mhiri N; Chamkha M; Sayadi S
    J Basic Microbiol; 2012 Aug; 52(4):408-18. PubMed ID: 22052657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria.
    Allen CC; Boyd DR; Hempenstall F; Larkin MJ; Sharma ND
    Appl Environ Microbiol; 1999 Mar; 65(3):1335-9. PubMed ID: 10049904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [PAH removal from black sludge from aluminium industry by flotation using non-ionic surfactants].
    Dhenain A; Mercier G; Blais JF; Bergeron M
    Environ Technol; 2006 Sep; 27(9):1019-30. PubMed ID: 17067128
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant.
    Gao Y; Shen Q; Ling W; Ren L
    Chemosphere; 2008 Jun; 72(4):636-43. PubMed ID: 18387650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils.
    Tang X; Dong S; Shi W; Gao N; Zuo L; Xu H
    J Basic Microbiol; 2016 Nov; 56(11):1194-1202. PubMed ID: 27477618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.