These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17107035)

  • 21. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane).
    Choi S; Park JK
    Lab Chip; 2009 Jul; 9(13):1962-5. PubMed ID: 19532973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-Step Fabrication of Microchannels Lined with a Metal Oxide Coating.
    Patil S; Ranjan A; Maitra T; Sharma A
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10494-8. PubMed ID: 27035524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyimide-based microfluidic devices.
    Metz S; Holzer R; Renaud P
    Lab Chip; 2001 Sep; 1(1):29-34. PubMed ID: 15100886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell.
    Mitrovski SM; Elliott LC; Nuzzo RG
    Langmuir; 2004 Aug; 20(17):6974-6. PubMed ID: 15301473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic adhesion induced by subsurface microstructures.
    Majumder A; Ghatak A; Sharma A
    Science; 2007 Oct; 318(5848):258-61. PubMed ID: 17932295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization.
    Zhou X; Lau L; Lam WW; Au SW; Zheng B
    Anal Chem; 2007 Jul; 79(13):4924-30. PubMed ID: 17547370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane).
    Patrito N; McCague C; Norton PR; Petersen NO
    Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microchannel deformations due to solvent-induced PDMS swelling.
    Dangla R; Gallaire F; Baroud CN
    Lab Chip; 2010 Nov; 10(21):2972-8. PubMed ID: 20848011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glass coating for PDMS microfluidic channels by sol-gel methods.
    Abate AR; Lee D; Do T; Holtze C; Weitz DA
    Lab Chip; 2008 Apr; 8(4):516-8. PubMed ID: 18369504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems.
    Barbier V; Tatoulian M; Li H; Arefi-Khonsari F; Ajdari A; Tabeling P
    Langmuir; 2006 Jun; 22(12):5230-2. PubMed ID: 16732644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. I-shaped microchannel array chip for parallel electrophoretic analyses.
    Inoue A; Ito T; Makino K; Hosokawa K; Maeda M
    Anal Chem; 2007 Mar; 79(5):2168-73. PubMed ID: 17269791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays.
    Sung WC; Chen HH; Makamba H; Chen SH
    Anal Chem; 2009 Oct; 81(19):7967-73. PubMed ID: 19722534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J; Glawdel T; Ren CL; Pawliszyn J
    Lab Chip; 2009 Jul; 9(13):1926-32. PubMed ID: 19532968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic channels with renewable and switchable biological functionalities based on host-guest interactions.
    Li S; Liu B; Wei T; Hu C; Hang Y; Dong Y; Liu X; Chen H
    J Mater Chem B; 2018 Dec; 6(48):8055-8063. PubMed ID: 32254924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterned solvent delivery and etching for the fabrication of plastic microfluidic devices.
    Brister PC; Weston KD
    Anal Chem; 2005 Nov; 77(22):7478-82. PubMed ID: 16285703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.