BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 17107108)

  • 21. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoreactions of metarhodopsin III.
    Vogel R; Lüdeke S; Radu I; Siebert F; Sheves M
    Biochemistry; 2004 Aug; 43(31):10255-64. PubMed ID: 15287753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectrometric study of tautomeric and protonation equilibria of o-vanillin Schiff base derivatives and their complexes with Cu(II).
    Galić N; Cimerman Z; Tomisić V
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1274-80. PubMed ID: 18456546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of thermal activation of an ultraviolet cone pigment.
    Mooney V; Sekharan S; Liu J; Guo Y; Batista VS; Yan EC
    J Am Chem Soc; 2015 Jan; 137(1):307-13. PubMed ID: 25514632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple functions of Schiff base counterion in rhodopsins.
    Tsutsui K; Shichida Y
    Photochem Photobiol Sci; 2010 Nov; 9(11):1426-34. PubMed ID: 20842311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates.
    Mooney VL; Szundi I; Lewis JW; Yan EC; Kliger DS
    Biochemistry; 2012 Mar; 51(12):2630-7. PubMed ID: 22394396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct measurement of the isomerization barrier of the isolated retinal chromophore.
    Dilger J; Musbat L; Sheves M; Bochenkova AV; Clemmer DE; Toker Y
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4748-52. PubMed ID: 25756226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin.
    Creemers AF; Klaassen CH; Bovee-Geurts PH; Kelle R; Kragl U; Raap J; de Grip WJ; Lugtenburg J; de Groot HJ
    Biochemistry; 1999 Jun; 38(22):7195-9. PubMed ID: 10353830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the molecular mechanism for color distinction in humans.
    Trabanino RJ; Vaidehi N; Goddard WA
    J Phys Chem B; 2006 Aug; 110(34):17230-9. PubMed ID: 16928022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin.
    Pande C; Deng H; Rath P; Callender RH; Schwemer J
    Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fiber optic pH sensing with long wavelength excitable Schiff bases in the pH range of 7.0-12.0.
    Derinkuyu S; Ertekin K; Oter O; Denizalti S; Cetinkaya E
    Anal Chim Acta; 2007 Apr; 588(1):42-9. PubMed ID: 17386792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosensitivities of rhodopsin mutants with a displaced counterion.
    Tsutsui K; Shichida Y
    Biochemistry; 2010 Nov; 49(47):10089-97. PubMed ID: 21038858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloride binding regulates the Schiff base pK in gecko P521 cone-type visual pigment.
    Yuan C; Kuwata O; Liang J; Misra S; Balashov SP; Ebrey TG
    Biochemistry; 1999 Apr; 38(14):4649-54. PubMed ID: 10194387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. UV-vis absorption properties of polyazomethine in base and protonated with 1,2-(di-2-ethylhexyl)ester of 4-sulfophthalic acid form.
    Iwan A; Rannou P
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):174-9. PubMed ID: 19570708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae.
    Penzkofer A; Scheib U; Stehfest K; Hegemann P
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28981475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.