These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 17107108)

  • 41. Model systems for understanding absorption tuning by opsin proteins.
    Nielsen MB
    Chem Soc Rev; 2009 Apr; 38(4):913-24. PubMed ID: 19421571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multistate/multifunctional switches based on photochromic Schiff base.
    Zhao L; Hou Q; Sui D; Wang Y; Jiang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1120-5. PubMed ID: 17097913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activity switches of rhodopsin.
    Ritter E; Elgeti M; Bartl FJ
    Photochem Photobiol; 2008; 84(4):911-20. PubMed ID: 18422873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure, spectroscopy, and spectral tuning of the gas-phase retinal chromophore: the beta-ionone "handle" and alkyl group effect.
    Cembran A; Gonzalez-Luque R; Altoè P; Merchan M; Bernardi F; Olivucci M; Garavelli M
    J Phys Chem A; 2005 Jul; 109(29):6597-605. PubMed ID: 16834008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments.
    Steinberg G; Ottolenghi M; Sheves M
    Biophys J; 1993 May; 64(5):1499-502. PubMed ID: 8391868
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gas-phase spectroscopy of protonated 3-OH kynurenine and argpyrimidine. comparison of experimental results to theoretical modeling.
    Kessel L; Nielsen IB; Bochenkova AV; Bravaya KB; Andersen LH
    J Phys Chem A; 2007 Oct; 111(42):10537-43. PubMed ID: 17914773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells.
    Lewis A
    Fed Proc; 1976 Jan; 35(1):51-3. PubMed ID: 1245232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure dependent prototropy in 4-hydroxy-3-formylideneamino-1-methyl/phenylquinolin-2-ones.
    Reddy TS; Rameshwar N; Bhudevi B; Reddy AR
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):916-21. PubMed ID: 19477678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. S1 and S2 excited States of gas-phase Schiff-base retinal chromophores.
    Nielsen IB; Lammich L; Andersen LH
    Phys Rev Lett; 2006 Jan; 96(1):018304. PubMed ID: 16486529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proton transfer reaction of a new orthohydroxy Schiff base at room temperature and 77 K.
    Mandal A; Fitzmaurice D; Waghorne E; Koll A; Filarowski A; Quinn S; Mukherjee S
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):805-13. PubMed ID: 15036091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. UV-vis, IR and (1)H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine.
    Issa RM; Khedr AM; Rizk HF
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):621-9. PubMed ID: 16257767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular mechanism of spectral tuning in sensory rhodopsin II.
    Ren L; Martin CH; Wise KJ; Gillespie NB; Luecke H; Lanyi JK; Spudich JL; Birge RR
    Biochemistry; 2001 Nov; 40(46):13906-14. PubMed ID: 11705380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base and a counterion switch during photoactivation.
    Kusnetzow AK; Dukkipati A; Babu KR; Ramos L; Knox BE; Birge RR
    Proc Natl Acad Sci U S A; 2004 Jan; 101(4):941-6. PubMed ID: 14732701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical study of the opsin shift of deprotonated retinal schiff base in the M state of bacteriorhodopsin.
    Fujimoto KJ; Asai K; Hasegawa JY
    Phys Chem Chem Phys; 2010 Oct; 12(40):13107-16. PubMed ID: 20830417
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristic and spectroscopic properties of the Schiff-base model compounds.
    Jarzabek B; Kaczmarczyk B; Sek D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Nov; 74(4):949-54. PubMed ID: 19748307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alpha-retinals as rhodopsin chromophores--preference for the 9-Z configuration and partial agonist activity.
    Wang Y; Bovee-Geurts PH; Lugtenburg J; DeGrip WJ
    Photochem Photobiol; 2008; 84(4):889-94. PubMed ID: 18346085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.