BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17107173)

  • 1. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO(4) nanocrystals.
    Fan W; Song X; Bu Y; Sun S; Zhao X
    J Phys Chem B; 2006 Nov; 110(46):23247-54. PubMed ID: 17107173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective synthesis of monazite- and zircon-type LaVO(4) nanocrystals.
    Jia CJ; Sun LD; You LP; Jiang XC; Luo F; Pang YC; Yan CH
    J Phys Chem B; 2005 Mar; 109(8):3284-90. PubMed ID: 16851354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal synthesis, dimension evolution and luminescence properties of tetragonal LaVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) nanocrystals.
    He F; Yang P; Wang D; Niu N; Gai S; Li X; Zhang M
    Dalton Trans; 2011 Nov; 40(41):11023-30. PubMed ID: 21927748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures, anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials.
    Yan R; Sun X; Wang X; Peng Q; Li Y
    Chemistry; 2005 Mar; 11(7):2183-95. PubMed ID: 15714538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation.
    Li W; Huang H; Li H; Zhang W; Liu H
    Langmuir; 2008 Aug; 24(15):8358-66. PubMed ID: 18582130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.
    Huang PX; Wu F; Zhu BL; Gao XP; Zhu HY; Yan TY; Huang WP; Wu SH; Song DY
    J Phys Chem B; 2005 Oct; 109(41):19169-74. PubMed ID: 16853472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process.
    Zhou G; Lü M; Xiu Z; Wang S; Zhang H; Zhou Y; Wang S
    J Phys Chem B; 2006 Apr; 110(13):6543-8. PubMed ID: 16570952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape control of CdSe nanocrystals with zinc blende structure.
    Liu L; Zhuang Z; Xie T; Wang YG; Li J; Peng Q; Li Y
    J Am Chem Soc; 2009 Nov; 131(45):16423-9. PubMed ID: 19902978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid.
    Ding K; Miao Z; Hu B; An G; Sun Z; Han B; Liu Z
    Langmuir; 2010 Jun; 26(12):10294-302. PubMed ID: 20426393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.
    Xi G; Ye J
    Inorg Chem; 2010 Mar; 49(5):2302-9. PubMed ID: 20088491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network.
    Chen X; Xu H; Xu N; Zhao F; Lin W; Lin G; Fu Y; Huang Z; Wang H; Wu M
    Inorg Chem; 2003 May; 42(9):3100-6. PubMed ID: 12716207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology-controlled synthesis of inorganic nanocrystals via surface reconstruction of nuclei.
    Xiang G; Zhuang J; Wang X
    Inorg Chem; 2009 Nov; 48(21):10222-30. PubMed ID: 19852520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties.
    Zhang F; Li J; Shan J; Xu L; Zhao D
    Chemistry; 2009 Oct; 15(41):11010-9. PubMed ID: 19739209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: formation mechanism and characterization of surface properties.
    Wen P; Itoh H; Tang W; Feng Q
    Langmuir; 2007 Nov; 23(23):11782-90. PubMed ID: 17935363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple way to prepare PbS nanocrystals with morphology tuning at room temperature.
    Zhang Z; Lee SH; Vittal JJ; Chin WS
    J Phys Chem B; 2006 Apr; 110(13):6649-54. PubMed ID: 16570968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step preparation of single-crystalline beta-MnO2 nanotubes.
    Zheng D; Sun S; Fan W; Yu H; Fan C; Cao G; Yin Z; Song X
    J Phys Chem B; 2005 Sep; 109(34):16439-43. PubMed ID: 16853090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy.
    Du W; Qian X; Yin J; Gong Q
    Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.