BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17107340)

  • 21. Functional characterisation of the R2452W ryanodine receptor variant associated with malignant hyperthermia susceptibility.
    Roesl C; Sato K; Schiemann A; Pollock N; Stowell KM
    Cell Calcium; 2014 Sep; 56(3):195-201. PubMed ID: 25086907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ryanodine receptor type 1 (RyR1) possessing malignant hyperthermia mutation R615C exhibits heightened sensitivity to dysregulation by non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95).
    Ta TA; Pessah IN
    Neurotoxicology; 2007 Jul; 28(4):770-9. PubMed ID: 17023049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ryanodine receptor in different malignant hyperthermia-susceptible porcine muscles.
    Ervasti JM; Strand MA; Hanson TP; Mickelson JR; Louis CF
    Am J Physiol; 1991 Jan; 260(1 Pt 1):C58-66. PubMed ID: 1824808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor.
    Shomer NH; Louis CF; Fill M; Litterer LA; Mickelson JR
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C125-35. PubMed ID: 7679249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered binding site for Ca2+ in the ryanodine receptor of human malignant hyperthermia.
    Valdivia HH; Hogan K; Coronado R
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C237-45. PubMed ID: 1872369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormal rapid Ca2+ release from sarcoplasmic reticulum of malignant hyperthermia susceptible pigs.
    Carrier L; Villaz M; Dupont Y
    Biochim Biophys Acta; 1991 May; 1064(2):175-83. PubMed ID: 1645197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeine stimulation of malignant hyperthermia-susceptible sarcoplasmic reticulum Ca2+ release channel.
    Shomer NH; Mickelson JR; Louis CF
    Am J Physiol; 1994 Nov; 267(5 Pt 1):C1253-61. PubMed ID: 7977689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of propofol on Ca2+ regulation by malignant hyperthermia-susceptible muscle membranes.
    Fruen BR; Mickelson JR; Roghair TJ; Litterer LA; Louis CF
    Anesthesiology; 1995 May; 82(5):1274-82. PubMed ID: 7741303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides.
    Pessah IN; Stambuk RA; Casida JE
    Mol Pharmacol; 1987 Mar; 31(3):232-8. PubMed ID: 2436032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The action of perchlorate on malignant-hyperthermia-susceptible muscle.
    Anderson LC; Fruen BR; Jordan RC; Louis CF; Gallant EM
    Pflugers Arch; 1997 Dec; 435(1):91-8. PubMed ID: 9359907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Molecular pathology of malignant hyperthermia and central core disease].
    Takagi A
    Nihon Rinsho; 1997 Dec; 55(12):3307-14. PubMed ID: 9436456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-activity relationship for noncoplanar polychlorinated biphenyl congeners toward the ryanodine receptor-Ca2+ channel complex type 1 (RyR1).
    Pessah IN; Hansen LG; Albertson TE; Garner CE; Ta TA; Do Z; Kim KH; Wong PW
    Chem Res Toxicol; 2006 Jan; 19(1):92-101. PubMed ID: 16411661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum.
    Seo IR; Moh SH; Lee EH; Meissner G; Kim DH
    Biochem J; 2006 Oct; 399(2):325-33. PubMed ID: 16817780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FK506 (tacrolimus) increases halothane-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum.
    Chini EN; Walker H
    Anesthesiology; 2000 May; 92(5):1361-5. PubMed ID: 10781282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle.
    Shtifman A; Ward CW; Yamamoto T; Wang J; Olbinski B; Valdivia HH; Ikemoto N; Schneider MF
    J Gen Physiol; 2002 Jan; 119(1):15-32. PubMed ID: 11773235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevated resting [Ca(2+)](i) in myotubes expressing malignant hyperthermia RyR1 cDNAs is partially restored by modulation of passive calcium leak from the SR.
    Yang T; Esteve E; Pessah IN; Molinski TF; Allen PD; López JR
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1591-8. PubMed ID: 17182726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca2+, Mg2+, and ATP.
    Diaz-Sylvester PL; Porta M; Copello JA
    Am J Physiol Cell Physiol; 2008 Apr; 294(4):C1103-12. PubMed ID: 18305228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional defects in six ryanodine receptor isoform-1 (RyR1) mutations associated with malignant hyperthermia and their impact on skeletal excitation-contraction coupling.
    Yang T; Ta TA; Pessah IN; Allen PD
    J Biol Chem; 2003 Jul; 278(28):25722-30. PubMed ID: 12732639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure.
    Reiken S; Lacampagne A; Zhou H; Kherani A; Lehnart SE; Ward C; Huang F; Gaburjakova M; Gaburjakova J; Rosemblit N; Warren MS; He KL; Yi GH; Wang J; Burkhoff D; Vassort G; Marks AR
    J Cell Biol; 2003 Mar; 160(6):919-28. PubMed ID: 12629052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.