These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 17107558)
1. Long-term exposure to elevated zinc concentrations induced structural changes and zinc tolerance of the nitrifying community in soil. Mertens J; Springael D; De Troyer I; Cheyns K; Wattiau P; Smolders E Environ Microbiol; 2006 Dec; 8(12):2170-8. PubMed ID: 17107558 [TBL] [Abstract][Full Text] [Related]
2. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
3. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305 [TBL] [Abstract][Full Text] [Related]
4. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Kasai Y; Takahata Y; Hoaki T; Watanabe K Environ Microbiol; 2005 Jun; 7(6):806-18. PubMed ID: 15892700 [TBL] [Abstract][Full Text] [Related]
5. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils. Mertens J; Wakelin SA; Broos K; McLaughlin MJ; Smolders E Environ Toxicol Chem; 2010 Jan; 29(1):27-37. PubMed ID: 20821416 [TBL] [Abstract][Full Text] [Related]
6. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
7. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
8. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities. Lock K; Janssen CR Environ Pollut; 2005 Jul; 136(2):275-81. PubMed ID: 15840535 [TBL] [Abstract][Full Text] [Related]
9. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils. Nejidat A FEMS Microbiol Ecol; 2005 Mar; 52(1):21-9. PubMed ID: 16329889 [TBL] [Abstract][Full Text] [Related]
10. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. He JZ; Shen JP; Zhang LM; Zhu YG; Zheng YM; Xu MG; Di H Environ Microbiol; 2007 Sep; 9(9):2364-74. PubMed ID: 17686032 [TBL] [Abstract][Full Text] [Related]
12. An in situ respirometric technique to measure pollution-induced microbial community tolerance in soils contaminated with 2,4, 6-trinitrotoluene. Gong P; Gasparrini P; Rho D; Hawari J; Thiboutot S; Ampleman G; Sunahara GI Ecotoxicol Environ Saf; 2000 Sep; 47(1):96-103. PubMed ID: 10993709 [TBL] [Abstract][Full Text] [Related]
13. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Shen JP; Zhang LM; Zhu YG; Zhang JB; He JZ Environ Microbiol; 2008 Jun; 10(6):1601-11. PubMed ID: 18336563 [TBL] [Abstract][Full Text] [Related]
14. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339 [TBL] [Abstract][Full Text] [Related]
15. A combination method to study microbial communities and activities in zinc contaminated soil. Zhou Y; Yao J; Choi MM; Chen Y; Chen H; Mohammad R; Zhuang R; Chen H; Wang F; Maskow T; Zaray G J Hazard Mater; 2009 Sep; 169(1-3):875-81. PubMed ID: 19443111 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389 [TBL] [Abstract][Full Text] [Related]
17. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Tourna M; Freitag TE; Nicol GW; Prosser JI Environ Microbiol; 2008 May; 10(5):1357-64. PubMed ID: 18325029 [TBL] [Abstract][Full Text] [Related]
18. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Webster G; Embley TM; Freitag TE; Smith Z; Prosser JI Environ Microbiol; 2005 May; 7(5):676-84. PubMed ID: 15819850 [TBL] [Abstract][Full Text] [Related]
19. Comparison of toxicity of zinc for soil microbial processes between laboratory-contamined and polluted field soils. Smolders E; McGrath SP; Lombi E; Karman CC; Bernhard R; Cools D; Van den Brande K; van Os B; Walrave N Environ Toxicol Chem; 2003 Nov; 22(11):2592-8. PubMed ID: 14587897 [TBL] [Abstract][Full Text] [Related]
20. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]