BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 17107688)

  • 1. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.
    Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K
    J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction.
    Kort R; Komori H; Adachi S; Miki K; Eker A
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1205-13. PubMed ID: 15213381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases.
    Okafuji A; Biskup T; Hitomi K; Getzoff ED; Kaiser G; Batschauer A; Bacher A; Hidema J; Teranishi M; Yamamoto K; Schleicher E; Weber S
    DNA Repair (Amst); 2010 May; 9(5):495-505. PubMed ID: 20227927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus.
    Klar T; Kaiser G; Hennecke U; Carell T; Batschauer A; Essen LO
    Chembiochem; 2006 Nov; 7(11):1798-806. PubMed ID: 17051659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism.
    Komori H; Masui R; Kuramitsu S; Yokoyama S; Shibata T; Inoue Y; Miki K
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13560-5. PubMed ID: 11707580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active DNA photolyase encoded by a baculovirus from the insect Chrysodeixis chalcites.
    van Oers MM; Lampen MH; Bajek MI; Vlak JM; Eker AP
    DNA Repair (Amst); 2008 Aug; 7(8):1309-18. PubMed ID: 18547877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair.
    Mees A; Klar T; Gnau P; Hennecke U; Eker AP; Carell T; Essen LO
    Science; 2004 Dec; 306(5702):1789-93. PubMed ID: 15576622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site of Escherichia coli DNA photolyase: Asn378 is crucial both for stabilizing the neutral flavin radical cofactor and for DNA repair.
    Xu L; Mu W; Ding Y; Luo Z; Han Q; Bi F; Wang Y; Song Q
    Biochemistry; 2008 Aug; 47(33):8736-43. PubMed ID: 18652481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA photorepair: chromophore composition and function in two classes of DNA photolyases.
    Jorns MS
    Biofactors; 1990 Oct; 2(4):207-11. PubMed ID: 2282137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase.
    Murphy AK; Tammaro M; Cortazar F; Gindt YM; Schelvis JP
    J Phys Chem B; 2008 Nov; 112(47):15217-26. PubMed ID: 18973361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement.
    Ueda T; Kato A; Ogawa Y; Torizawa T; Kuramitsu S; Iwai S; Terasawa H; Shimada I
    J Biol Chem; 2004 Dec; 279(50):52574-9. PubMed ID: 15465818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic structure and environment in FAD cofactor of (6-4) photolyase along function revealed by resonance Raman spectroscopy.
    Li J; Uchida T; Ohta T; Todo T; Kitagawa T
    J Phys Chem B; 2006 Aug; 110(33):16724-32. PubMed ID: 16913812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna.
    Klar T; Pokorny R; Moldt J; Batschauer A; Essen LO
    J Mol Biol; 2007 Feb; 366(3):954-64. PubMed ID: 17188299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV.
    Thiagarajan V; Villette S; Espagne A; Eker AP; Brettel K; Byrdin M
    Biochemistry; 2010 Jan; 49(2):297-303. PubMed ID: 20000331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA repair by photolyases.
    Kavakli IH; Ozturk N; Gul S
    Adv Protein Chem Struct Biol; 2019; 115():1-19. PubMed ID: 30798929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases.
    Kiontke S; Gnau P; Haselsberger R; Batschauer A; Essen LO
    J Biol Chem; 2014 Jul; 289(28):19659-69. PubMed ID: 24849603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.