These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
548 related articles for article (PubMed ID: 17107688)
1. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688 [TBL] [Abstract][Full Text] [Related]
2. DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction. Kort R; Komori H; Adachi S; Miki K; Eker A Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1205-13. PubMed ID: 15213381 [TBL] [Abstract][Full Text] [Related]
3. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. Okafuji A; Biskup T; Hitomi K; Getzoff ED; Kaiser G; Batschauer A; Bacher A; Hidema J; Teranishi M; Yamamoto K; Schleicher E; Weber S DNA Repair (Amst); 2010 May; 9(5):495-505. PubMed ID: 20227927 [TBL] [Abstract][Full Text] [Related]
4. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy. Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252 [TBL] [Abstract][Full Text] [Related]
5. Natural and non-natural antenna chromophores in the DNA photolyase from Thermus thermophilus. Klar T; Kaiser G; Hennecke U; Carell T; Batschauer A; Essen LO Chembiochem; 2006 Nov; 7(11):1798-806. PubMed ID: 17051659 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism. Komori H; Masui R; Kuramitsu S; Yokoyama S; Shibata T; Inoue Y; Miki K Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13560-5. PubMed ID: 11707580 [TBL] [Abstract][Full Text] [Related]
7. Active DNA photolyase encoded by a baculovirus from the insect Chrysodeixis chalcites. van Oers MM; Lampen MH; Bajek MI; Vlak JM; Eker AP DNA Repair (Amst); 2008 Aug; 7(8):1309-18. PubMed ID: 18547877 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Mees A; Klar T; Gnau P; Hennecke U; Eker AP; Carell T; Essen LO Science; 2004 Dec; 306(5702):1789-93. PubMed ID: 15576622 [TBL] [Abstract][Full Text] [Related]
10. Active site of Escherichia coli DNA photolyase: Asn378 is crucial both for stabilizing the neutral flavin radical cofactor and for DNA repair. Xu L; Mu W; Ding Y; Luo Z; Han Q; Bi F; Wang Y; Song Q Biochemistry; 2008 Aug; 47(33):8736-43. PubMed ID: 18652481 [TBL] [Abstract][Full Text] [Related]
11. DNA photorepair: chromophore composition and function in two classes of DNA photolyases. Jorns MS Biofactors; 1990 Oct; 2(4):207-11. PubMed ID: 2282137 [TBL] [Abstract][Full Text] [Related]
12. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA. Li J; Uchida T; Todo T; Kitagawa T J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385 [TBL] [Abstract][Full Text] [Related]
13. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase. Murphy AK; Tammaro M; Cortazar F; Gindt YM; Schelvis JP J Phys Chem B; 2008 Nov; 112(47):15217-26. PubMed ID: 18973361 [TBL] [Abstract][Full Text] [Related]
14. NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement. Ueda T; Kato A; Ogawa Y; Torizawa T; Kuramitsu S; Iwai S; Terasawa H; Shimada I J Biol Chem; 2004 Dec; 279(50):52574-9. PubMed ID: 15465818 [TBL] [Abstract][Full Text] [Related]
15. Characteristic structure and environment in FAD cofactor of (6-4) photolyase along function revealed by resonance Raman spectroscopy. Li J; Uchida T; Ohta T; Todo T; Kitagawa T J Phys Chem B; 2006 Aug; 110(33):16724-32. PubMed ID: 16913812 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270 [TBL] [Abstract][Full Text] [Related]
17. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. Klar T; Pokorny R; Moldt J; Batschauer A; Essen LO J Mol Biol; 2007 Feb; 366(3):954-64. PubMed ID: 17188299 [TBL] [Abstract][Full Text] [Related]
18. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV. Thiagarajan V; Villette S; Espagne A; Eker AP; Brettel K; Byrdin M Biochemistry; 2010 Jan; 49(2):297-303. PubMed ID: 20000331 [TBL] [Abstract][Full Text] [Related]
19. DNA repair by photolyases. Kavakli IH; Ozturk N; Gul S Adv Protein Chem Struct Biol; 2019; 115():1-19. PubMed ID: 30798929 [TBL] [Abstract][Full Text] [Related]
20. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases. Kiontke S; Gnau P; Haselsberger R; Batschauer A; Essen LO J Biol Chem; 2014 Jul; 289(28):19659-69. PubMed ID: 24849603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]