These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17107882)

  • 21. Amyloid-like fibril formation of co-chaperonin GroES: nucleation and extension prefer different degrees of molecular compactness.
    Higurashi T; Yagi H; Mizobata T; Kawata Y
    J Mol Biol; 2005 Sep; 351(5):1057-69. PubMed ID: 16054644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation.
    Takahashi T; Mihara H
    Acc Chem Res; 2008 Oct; 41(10):1309-18. PubMed ID: 18937396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process.
    Amdursky N; Gazit E; Rosenman G
    Biochem Biophys Res Commun; 2012 Mar; 419(2):232-7. PubMed ID: 22333569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amyloid fibrils formation and amorphous aggregation in concanavalin A.
    Vetri V; Canale C; Relini A; Librizzi F; Militello V; Gliozzi A; Leone M
    Biophys Chem; 2007 Jan; 125(1):184-90. PubMed ID: 16934387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology.
    Marek P; Abedini A; Song B; Kanungo M; Johnson ME; Gupta R; Zaman W; Wong SS; Raleigh DP
    Biochemistry; 2007 Mar; 46(11):3255-61. PubMed ID: 17311418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies.
    Porat Y; Kolusheva S; Jelinek R; Gazit E
    Biochemistry; 2003 Sep; 42(37):10971-7. PubMed ID: 12974632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of different processes in human insulin amyloid formation.
    Manno M; Craparo EF; Podestà A; Bulone D; Carrotta R; Martorana V; Tiana G; San Biagio PL
    J Mol Biol; 2007 Feb; 366(1):258-74. PubMed ID: 17157312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Secondary nucleation and accessible surface in insulin amyloid fibril formation.
    Foderà V; Librizzi F; Groenning M; van de Weert M; Leone M
    J Phys Chem B; 2008 Mar; 112(12):3853-8. PubMed ID: 18311965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
    Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ
    J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from alpha-synuclein mutants.
    van Raaij ME; Segers-Nolten IM; Subramaniam V
    Biophys J; 2006 Dec; 91(11):L96-8. PubMed ID: 16997873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by β-lactoglobulin.
    Ma B; Xie J; Wei L; Li W
    Int J Biol Macromol; 2013 Feb; 53():82-7. PubMed ID: 23148946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the spherical intermediates and fibril formation of hCT in HEPES solution using solid-state 13C-NMR and transmission electron microscopy.
    Itoh-Watanabe H; Kamihira-Ishijima M; Kawamura I; Kondoh M; Nakakoshi M; Sato M; Naito A
    Phys Chem Chem Phys; 2013 Oct; 15(39):16956-64. PubMed ID: 24002168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observation of amyloid fibril growth, propagation, and adaptation.
    Ban T; Yamaguchi K; Goto Y
    Acc Chem Res; 2006 Sep; 39(9):663-70. PubMed ID: 16981683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired processing of human pro-islet amyloid polypeptide is not a causative factor for fibril formation or membrane damage in vitro.
    Khemtémourian L; Lahoz Casarramona G; Suylen DP; Hackeng TM; Meeldijk JD; de Kruijff B; Höppener JW; Killian JA
    Biochemistry; 2009 Nov; 48(46):10918-25. PubMed ID: 19817482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of amyloid fibrils via longitudinal growth of oligomers.
    Shahi P; Sharma R; Sanger S; Kumar I; Jolly RS
    Biochemistry; 2007 Jun; 46(25):7365-73. PubMed ID: 17536835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amyloid fibril formation by human stefin B: influence of pH and TFE on fibril growth and morphology.
    Zerovnik E; Skarabot M; Skerget K; Giannini S; Stoka V; Jenko-Kokalj S; Staniforth RA
    Amyloid; 2007 Sep; 14(3):237-47. PubMed ID: 17701471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of fibril formation by a 39-residue peptide (PAPf39) from human prostatic acidic phosphatase.
    Ye Z; French KC; Popova LA; Lednev IK; Lopez MM; Makhatadze GI
    Biochemistry; 2009 Dec; 48(48):11582-91. PubMed ID: 19902966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structures for amyloid fibrils.
    Makin OS; Serpell LC
    FEBS J; 2005 Dec; 272(23):5950-61. PubMed ID: 16302960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apomyoglobin reveals a random-nucleation mechanism in amyloid protofibril formation.
    Fändrich M; Zandomeneghi G; Krebs MR; Kittler M; Buder K; Rossner A; Heinemann SH; Dobson CM; Diekmann S
    Acta Histochem; 2006; 108(3):215-9. PubMed ID: 16714052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.