These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 17107882)
41. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Margittai M; Langen R Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806 [TBL] [Abstract][Full Text] [Related]
42. Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Itoh-Watanabe H; Kamihira-Ishijima M; Javkhlantugs N; Inoue R; Itoh Y; Endo H; Tuzi S; Saitô H; Ueda K; Naito A Phys Chem Chem Phys; 2013 Jun; 15(23):8890-901. PubMed ID: 23552643 [TBL] [Abstract][Full Text] [Related]
43. The generic amyloid formation inhibition effect of a designed small aromatic β-breaking peptide. Frydman-Marom A; Shaltiel-Karyo R; Moshe S; Gazit E Amyloid; 2011 Sep; 18(3):119-27. PubMed ID: 21651439 [TBL] [Abstract][Full Text] [Related]
45. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways. El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314 [TBL] [Abstract][Full Text] [Related]
46. The role of prefibrillar structures in the assembly of a peptide amyloid. Ruschak AM; Miranker AD J Mol Biol; 2009 Oct; 393(1):214-26. PubMed ID: 19524594 [TBL] [Abstract][Full Text] [Related]
47. Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways. Grudzielanek S; Velkova A; Shukla A; Smirnovas V; Tatarek-Nossol M; Rehage H; Kapurniotu A; Winter R J Mol Biol; 2007 Jul; 370(2):372-84. PubMed ID: 17521669 [TBL] [Abstract][Full Text] [Related]
48. Formation of highly toxic soluble amyloid beta oligomers by the molecular chaperone prefoldin. Sakono M; Zako T; Ueda H; Yohda M; Maeda M FEBS J; 2008 Dec; 275(23):5982-93. PubMed ID: 19021772 [TBL] [Abstract][Full Text] [Related]
49. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics. Jha A; Udgaonkar JB; Krishnamoorthy G J Mol Biol; 2009 Oct; 393(3):735-52. PubMed ID: 19716830 [TBL] [Abstract][Full Text] [Related]
50. A partially structured region of a largely unstructured protein, Plasmodium falciparum merozoite surface protein 2 (MSP2), forms amyloid-like fibrils. Yang X; Adda CG; Keizer DW; Murphy VJ; Rizkalla MM; Perugini MA; Jackson DC; Anders RF; Norton RS J Pept Sci; 2007 Dec; 13(12):839-48. PubMed ID: 17883245 [TBL] [Abstract][Full Text] [Related]
51. Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide. Koo BW; Hebda JA; Miranker AD Protein Eng Des Sel; 2008 Mar; 21(3):147-54. PubMed ID: 18299291 [TBL] [Abstract][Full Text] [Related]
52. Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining. Binger KJ; Pham CL; Wilson LM; Bailey MF; Lawrence LJ; Schuck P; Howlett GJ J Mol Biol; 2008 Feb; 376(4):1116-29. PubMed ID: 18206908 [TBL] [Abstract][Full Text] [Related]
53. Studying the effects of chaperones on amyloid fibril formation. Zhang H; Xu LQ; Perrett S Methods; 2011 Mar; 53(3):285-94. PubMed ID: 21144901 [TBL] [Abstract][Full Text] [Related]
54. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein. Thorn DC; Ecroyd H; Sunde M; Poon S; Carver JA Biochemistry; 2008 Mar; 47(12):3926-36. PubMed ID: 18302322 [TBL] [Abstract][Full Text] [Related]
55. Effect of pressure on islet amyloid polypeptide aggregation: revealing the polymorphic nature of the fibrillation process. Radovan D; Smirnovas V; Winter R Biochemistry; 2008 Jun; 47(24):6352-60. PubMed ID: 18498175 [TBL] [Abstract][Full Text] [Related]
56. Structural characterization of microcin E492 amyloid formation: Identification of the precursors. Arranz R; Mercado G; Martín-Benito J; Giraldo R; Monasterio O; Lagos R; Valpuesta JM J Struct Biol; 2012 Apr; 178(1):54-60. PubMed ID: 22420976 [TBL] [Abstract][Full Text] [Related]
57. Amyloid fibril formation and other aggregate species formed by human serum albumin association. Taboada P; Barbosa S; Castro E; Mosquera V J Phys Chem B; 2006 Oct; 110(42):20733-6. PubMed ID: 17048876 [TBL] [Abstract][Full Text] [Related]
58. Size and morphology of toxic oligomers of amyloidogenic proteins: a case study of human stefin B. Ceru S; Kokalj SJ; Rabzelj S; Skarabot M; Gutierrez-Aguirre I; Kopitar-Jerala N; Anderluh G; Turk D; Turk V; Zerovnik E Amyloid; 2008 Sep; 15(3):147-59. PubMed ID: 18925453 [TBL] [Abstract][Full Text] [Related]
59. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation. Esteras-Chopo A; Morra G; Moroni E; Serrano L; Lopez de la Paz M; Colombo G J Mol Biol; 2008 Oct; 383(1):266-80. PubMed ID: 18703072 [TBL] [Abstract][Full Text] [Related]
60. Characterization of the formation of amyloid protofibrils from barstar by mapping residue-specific fluorescence dynamics. Mukhopadhyay S; Nayak PK; Udgaonkar JB; Krishnamoorthy G J Mol Biol; 2006 May; 358(4):935-42. PubMed ID: 16546212 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]