These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 17107967)

  • 1. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments.
    van Riel NA
    Brief Bioinform; 2006 Dec; 7(4):364-74. PubMed ID: 17107967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An insight to flux-balance analysis for biochemical networks.
    Anand S; Mukherjee K; Padmanabhan P
    Biotechnol Genet Eng Rev; 2020 Apr; 36(1):32-55. PubMed ID: 33292061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizing Gillespie's Direct Method to Enable Network-Free Simulations.
    Suderman R; Mitra ED; Lin YT; Erickson KE; Feng S; Hlavacek WS
    Bull Math Biol; 2019 Aug; 81(8):2822-2848. PubMed ID: 29594824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SysBioMed report: advancing systems biology for medical applications.
    Wolkenhauer O; Fell D; De Meyts P; Blüthgen N; Herzel H; Le Novère N; Höfer T; Schürrle K; van Leeuwen I
    IET Syst Biol; 2009 May; 3(3):131-6. PubMed ID: 19449974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of biochemical networks using COPASI.
    Mendes P; Hoops S; Sahle S; Gauges R; Dada J; Kummer U
    Methods Mol Biol; 2009; 500():17-59. PubMed ID: 19399433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks.
    Saa PA; Nielsen LK
    Biotechnol Adv; 2017 Dec; 35(8):981-1003. PubMed ID: 28916392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks.
    Marwan W; Rohr C; Heiner M
    Methods Mol Biol; 2012; 804():409-37. PubMed ID: 22144165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flux balance analysis: interrogating genome-scale metabolic networks.
    Oberhardt MA; Chavali AK; Papin JA
    Methods Mol Biol; 2009; 500():61-80. PubMed ID: 19399432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universally sloppy parameter sensitivities in systems biology models.
    Gutenkunst RN; Waterfall JJ; Casey FP; Brown KS; Myers CR; Sethna JP
    PLoS Comput Biol; 2007 Oct; 3(10):1871-78. PubMed ID: 17922568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model selection in systems biology depends on experimental design.
    Silk D; Kirk PD; Barnes CP; Toni T; Stumpf MP
    PLoS Comput Biol; 2014 Jun; 10(6):e1003650. PubMed ID: 24922483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of randomized sampling for analysis of metabolic networks.
    Schellenberger J; Palsson BØ
    J Biol Chem; 2009 Feb; 284(9):5457-61. PubMed ID: 18940807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional robustness analysis for fragility discovery and target identification in biochemical networks and in cancer systems biology.
    Bianconi F; Baldelli E; Ludovini V; Petricoin EF; Crinò L; Valigi P
    BMC Syst Biol; 2015 Oct; 9():70. PubMed ID: 26482604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases.
    Montagud A; Traynard P; Martignetti L; Bonnet E; Barillot E; Zinovyev A; Calzone L
    Brief Bioinform; 2019 Jul; 20(4):1238-1249. PubMed ID: 29237040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating between rival biochemical network models: three approaches to optimal experiment design.
    Mélykúti B; August E; Papachristodoulou A; El-Samad H
    BMC Syst Biol; 2010 Apr; 4():38. PubMed ID: 20356406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated procedure for the extraction of metabolic network information from time series data.
    Marino S; Voit EO
    J Bioinform Comput Biol; 2006 Jun; 4(3):665-91. PubMed ID: 16960969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recipes for Analysis of Molecular Networks Using the Data2Dynamics Modeling Environment.
    Steiert B; Kreutz C; Raue A; Timmer J
    Methods Mol Biol; 2019; 1945():341-362. PubMed ID: 30945255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.
    Breitling R; Gilbert D; Heiner M; Orton R
    Brief Bioinform; 2008 Sep; 9(5):404-21. PubMed ID: 18573813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.