These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17108168)

  • 1. Neural coding by two classes of principal cells in the mouse piriform cortex.
    Suzuki N; Bekkers JM
    J Neurosci; 2006 Nov; 26(46):11938-47. PubMed ID: 17108168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two layers of synaptic processing by principal neurons in piriform cortex.
    Suzuki N; Bekkers JM
    J Neurosci; 2011 Feb; 31(6):2156-66. PubMed ID: 21307252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility.
    Whalley BJ; Constanti A
    Neuroscience; 2006 Jul; 140(3):939-56. PubMed ID: 16616427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli.
    Delaney K; Davison I; Denk W
    Eur J Neurosci; 2001 May; 13(9):1658-72. PubMed ID: 11359518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
    Liu S; Puche AC; Shipley MT
    J Neurosci; 2016 Sep; 36(37):9604-17. PubMed ID: 27629712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane and synaptic properties of pyramidal neurons in the anterior olfactory nucleus.
    McGinley MJ; Westbrook GL
    J Neurophysiol; 2011 Apr; 105(4):1444-53. PubMed ID: 21123663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential synaptic processing separates stationary from transient inputs to the auditory cortex.
    Atzori M; Lei S; Evans DI; Kanold PO; Phillips-Tansey E; McIntyre O; McBain CJ
    Nat Neurosci; 2001 Dec; 4(12):1230-7. PubMed ID: 11694887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex.
    Suzuki N; Bekkers JM
    Cereb Cortex; 2010 Dec; 20(12):2971-84. PubMed ID: 20457693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
    Russo MJ; Franks KM; Oghaz R; Axel R; Siegelbaum SA
    J Neurosci; 2020 Dec; 40(49):9414-9425. PubMed ID: 33115926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External tufted cells drive the output of olfactory bulb glomeruli.
    De Saint Jan D; Hirnet D; Westbrook GL; Charpak S
    J Neurosci; 2009 Feb; 29(7):2043-52. PubMed ID: 19228958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel processing of afferent olfactory sensory information.
    Vaaga CE; Westbrook GL
    J Physiol; 2016 Nov; 594(22):6715-6732. PubMed ID: 27377344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex.
    Kapur A; Lytton WW; Ketchum KL; Haberly LB
    J Neurophysiol; 1997 Nov; 78(5):2546-59. PubMed ID: 9356404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding.
    Franks KM; Isaacson JS
    Neuron; 2006 Feb; 49(3):357-63. PubMed ID: 16446140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.