BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 17108180)

  • 21. Changes in the responses of cerebellar nuclear neurons associated with the climbing fiber response of Purkinje cells.
    McDevitt CJ; Ebner TJ; Bloedel JR
    Brain Res; 1987 Nov; 425(1):14-24. PubMed ID: 3427416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The climbing fibers of the cerebellar cortex, their origin and pathways in cat.
    Batini C; Corvisier J; Destombes J; Gioanni H; Everett J
    Exp Brain Res; 1976 Nov; 26(4):407-22. PubMed ID: 63384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization.
    Nagao S; Kitamura T; Nakamura N; Hiramatsu T; Yamada J
    J Comp Neurol; 1997 Jun; 382(4):480-98. PubMed ID: 9184995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Does synaptic elimination contribute to the organization of cerebellar microzones of climbing fiber projection?].
    Piat G; Thomson MA; Fuhrman Y; Mariani J; Delhaye-Bouchaud N
    C R Acad Sci III; 1991; 313(2):131-8. PubMed ID: 1913253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection.
    Gravel C; Hawkes R
    J Comp Neurol; 1990 Jan; 291(1):79-102. PubMed ID: 1688891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective retrograde labelling of the rat olivocerebellar climbing fiber system with D-[3H]aspartate.
    Wiklund L; Toggenburger G; Cuénod M
    Neuroscience; 1984 Oct; 13(2):441-68. PubMed ID: 6514187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit.
    Barmack NH; Shojaku H
    Neuroscience; 1992 Sep; 50(1):1-5. PubMed ID: 1407553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mossy and climbing fiber inputs from cutaneous mechanoreceptors to cerebellar Purkynĕ cells in unanesthetized cats.
    Leicht R; Rowe MJ; Schmidt RF
    Exp Brain Res; 1977 Apr; 27(5):459-77. PubMed ID: 856617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system.
    McCrea RA; Bishop GA; Kitai ST
    Brain Res; 1977 Feb; 122(2):215-28. PubMed ID: 837229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum.
    Ji Z; Jin Q; Vogel MW
    J Comp Neurol; 1997 Feb; 378(3):354-62. PubMed ID: 9034896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of neurons in the cerebellar nuclei and ascending reticular formation by stimulation of the cerebellar surface.
    Bantli H; Bloedel JR; Tolbert D
    J Neurosurg; 1976 Nov; 45(5):539-54. PubMed ID: 972338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplantation of embryonic olive in the climbing-fiber-deprived adult rat cerebellum: synaptogenesis on host Purkinje dendritic spines by donor climbing fibers.
    Kawamura K; Murase S; Yuasa S; Yoshida K
    Neurosci Res Suppl; 1990; 13():S61-4. PubMed ID: 2259488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers.
    Colin F; Manil J; Desclin JC
    Brain Res; 1980 Apr; 187(1):3-27. PubMed ID: 7357475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus.
    Ekerot CF; Larson B
    Exp Brain Res; 1980 Jan; 38(2):163-72. PubMed ID: 7358102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructural evidence for compensatory sprouting of climbing and mossy afferents to the cerebellar hemisphere after ipsilateral pedunculotomy in the newborn rat.
    Angaut P; Alvarado-Mallart RM; Sotelo C
    J Comp Neurol; 1982 Feb; 205(2):101-11. PubMed ID: 7076886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity.
    Blenkinsop TA; Lang EJ
    J Neurosci; 2011 Oct; 31(41):14708-20. PubMed ID: 21994387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological properties of afferents and synaptic reorganization in the rat cerebellum degranulated by postnatal X-irradiation.
    Puro DG; Woodward DJ
    J Neurobiol; 1978 May; 9(3):195-215. PubMed ID: 211202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for synaptic plasticity in the cerebellar cortex.
    Ito M
    Acta Morphol Hung; 1983; 31(1-3):213-8. PubMed ID: 6312772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat.
    Rossi F; Borsello T; Vaudano E; Strata P
    Neuroscience; 1993 Apr; 53(3):759-78. PubMed ID: 8487954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerebellar responses to teleceptive stimuli in alert monkeys.
    Mortimer JA
    Brain Res; 1975 Jan; 83(3):369-90. PubMed ID: 163116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.