These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Induction of anteroposterior neural pattern in Xenopus by planar signals. Doniach T Dev Suppl; 1992; ():183-93. PubMed ID: 1363721 [TBL] [Abstract][Full Text] [Related]
4. Induction of anteroposterior neural pattern in Xenopus: evidence for a quantitative mechanism. Doniach T; Musci TJ Mech Dev; 1995 Nov; 53(3):403-13. PubMed ID: 8645606 [TBL] [Abstract][Full Text] [Related]
5. Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Ruiz i Altaba A Development; 1992 Sep; 116(1):67-80. PubMed ID: 1483396 [TBL] [Abstract][Full Text] [Related]
6. Ectopic induction of dorsal mesoderm by overexpression of Xwnt-8 elevates the neural competence of Xenopus ectoderm. Otte AP; Moon RT Dev Biol; 1992 Jul; 152(1):184-7. PubMed ID: 1385790 [TBL] [Abstract][Full Text] [Related]
7. Homeogenetic neural induction in Xenopus. Servetnick M; Grainger RM Dev Biol; 1991 Sep; 147(1):73-82. PubMed ID: 1879617 [TBL] [Abstract][Full Text] [Related]
8. A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction. Sharpe CR; Fritz A; De Robertis EM; Gurdon JB Cell; 1987 Aug; 50(5):749-58. PubMed ID: 2441873 [TBL] [Abstract][Full Text] [Related]
9. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Doniach T; Phillips CR; Gerhart JC Science; 1992 Jul; 257(5069):542-5. PubMed ID: 1636091 [TBL] [Abstract][Full Text] [Related]
13. Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm. Ruiz i Altaba A Development; 1990 Apr; 108(4):595-604. PubMed ID: 1974841 [TBL] [Abstract][Full Text] [Related]
14. Patterning of morphogenetic cell behaviors in neural ectoderm of Xenopus laevis. Elul T; Koehl MA; Keller RE Ann N Y Acad Sci; 1998 Oct; 857():248-51. PubMed ID: 9917849 [No Abstract] [Full Text] [Related]
15. Reorganizing the organizer 75 years on. Nieto MA Cell; 1999 Aug; 98(4):417-25. PubMed ID: 10481907 [No Abstract] [Full Text] [Related]
16. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. Snir M; Ofir R; Elias S; Frank D EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397 [TBL] [Abstract][Full Text] [Related]
17. Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals. Dixon JE; Kintner CR Development; 1989 Aug; 106(4):749-57. PubMed ID: 2485245 [TBL] [Abstract][Full Text] [Related]
18. A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus. Saha MS; Grainger RM Neuron; 1992 Jun; 8(6):1003-14. PubMed ID: 1610562 [TBL] [Abstract][Full Text] [Related]
19. Cell contacts between chorda-mesoderm and the overlaying neuroectoderm (presumptive central nervous system) during the period of primary embryonic induction in amphibians. Grunz H; Staubach J Differentiation; 1979; 14(1-2):59-65. PubMed ID: 478211 [TBL] [Abstract][Full Text] [Related]
20. Axis determination in Xenopus: gradients and signals. Dawid IB; Taira M Bioessays; 1994 Jun; 16(6):385-6. PubMed ID: 7915901 [No Abstract] [Full Text] [Related] [Next] [New Search]