BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17108893)

  • 21. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds.
    Roy A; Weisel CP; Lioy PJ; Georgopoulos PG
    Risk Anal; 1996 Apr; 16(2):147-60. PubMed ID: 8638037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of variation in scaling factors on the estimation of internal dose metrics: a case study using bromodichloromethane (BDCM).
    Kenyon EM; Eklund C; Lipscomb JC; Pegram RA
    Toxicol Mech Methods; 2016 Oct; 26(8):620-626. PubMed ID: 27595344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the impact of the exposure route on the human kinetic adjustment factor.
    Valcke M; Krishnan K
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):258-69. PubMed ID: 20969910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Bayesian population physiologically based pharmacokinetic (PBPK) modeling and Markov chain Monte Carlo simulations to pesticide kinetics studies in protected marine mammals: DDT, DDE, and DDD in harbor porpoises.
    Weijs L; Yang RS; Das K; Covaci A; Blust R
    Environ Sci Technol; 2013 May; 47(9):4365-74. PubMed ID: 23560461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes.
    Haddad S; Tardif GC; Tardif R
    J Toxicol Environ Health A; 2006 Dec; 69(23):2095-136. PubMed ID: 17060096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study.
    Yoon M; Kedderis GL; Yan GZ; Clewell HJ
    Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiologically-based pharmacokinetic modeling of benzene in humans: a Bayesian approach.
    Yokley K; Tran HT; Pekari K; Rappaport S; Riihimaki V; Rothman N; Waidyanatha S; Schlosser PM
    Risk Anal; 2006 Aug; 26(4):925-43. PubMed ID: 16948686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition.
    Poulin P; Theil FP
    J Pharm Sci; 2002 May; 91(5):1358-70. PubMed ID: 11977112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.
    Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partition coefficients for the trihalomethanes among blood, urine, water, milk and air.
    Batterman S; Zhang L; Wang S; Franzblau A
    Sci Total Environ; 2002 Feb; 284(1-3):237-47. PubMed ID: 11846168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane.
    Lu Y; Rieth S; Lohitnavy M; Dennison J; El-Masri H; Barton HA; Bruckner J; Yang RS
    Regul Toxicol Pharmacol; 2008 Mar; 50(2):249-60. PubMed ID: 18226845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Bayesian population PBPK model for multiroute chloroform exposure.
    Yang Y; Xu X; Georgopoulos PG
    J Expo Sci Environ Epidemiol; 2010 Jun; 20(4):326-41. PubMed ID: 19471319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Public health interpretation of trihalomethane blood levels in the United States: NHANES 1999-2004.
    LaKind JS; Naiman DQ; Hays SM; Aylward LL; Blount BC
    J Expo Sci Environ Epidemiol; 2010 May; 20(3):255-62. PubMed ID: 19550438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene.
    Verner MA; McDougall R; Johanson G
    Toxicol Lett; 2012 Sep; 213(2):299-304. PubMed ID: 22677344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian calibration of a physiologically based pharmacokinetic/pharmacodynamic model of carbaryl cholinesterase inhibition.
    Nong A; Tan YM; Krolski ME; Wang J; Lunchick C; Conolly RB; Clewell HJ
    J Toxicol Environ Health A; 2008; 71(20):1363-81. PubMed ID: 18704829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative source allocation of TDI to drinking water for derivation of a criterion for chloroform: a Monte-Carlo and multi-exposure assessment.
    Niizuma S; Matsui Y; Ohno K; Itoh S; Matsushita T; Shirasaki N
    Regul Toxicol Pharmacol; 2013 Oct; 67(1):98-107. PubMed ID: 23867354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.