These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17109897)

  • 1. Appetitive flight patterns of male Agrotis segetum moths over landscape scales.
    Reynolds AM; Reynolds DR; Smith AD; Svensson GP; Löfstedt C
    J Theor Biol; 2007 Mar; 245(1):141-9. PubMed ID: 17109897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations on the flight paths of the day-flying moth Virbia lamae during periods of mate location: do males have a strategy for contacting the pheromone plume?
    Cardé RT; Cardé AM; Girling RD
    J Anim Ecol; 2012 Jan; 81(1):268-76. PubMed ID: 21729068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.
    Willis MA; Arbas EA
    J Comp Physiol A; 1991 Oct; 169(4):427-40. PubMed ID: 1779417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of antennal neurons in moths is associated with cessation of pheromone-mediated upwind flight.
    Baker TC; Hansson BS; Löfstedt C; Löfqvist J
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9826-30. PubMed ID: 3200859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The circadian rhythm of the sex-pheromone-mediated behavioral response in the turnip moth, Agrotis segetum, is not controlled at the peripheral level.
    Rosén WQ; Han GB; Löfstedt C
    J Biol Rhythms; 2003 Oct; 18(5):402-8. PubMed ID: 14582856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of wind speed on the pheromone-mediated behavior of sexual morphs of the potato aphid, Macrosiphum euphorbiae (Thomas) under laboratory and field conditions.
    Goldansaz SH; McNeil JN
    J Chem Ecol; 2006 Aug; 32(8):1719-29. PubMed ID: 16900427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codling moth males do not discriminate between pheromone and a pheromone/antagonist blend during upwind flight.
    Coracini M; Bengtsson M; Cichon L; Witzgall P
    Naturwissenschaften; 2003 Sep; 90(9):419-23. PubMed ID: 14504786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes.
    Girling RD; Cardé RT
    J Chem Ecol; 2007 Oct; 33(10):1927-45. PubMed ID: 17828430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More rare males in Ostrinia: response of Asian corn borer moths to the sex pheromone of the European corn borer.
    Linn CE; Musto CJ; Roelofs WL
    J Chem Ecol; 2007 Jan; 33(1):199-212. PubMed ID: 17146720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecific pheromone plume interference among sympatric heliothine moths: a wind tunnel test using live, calling females.
    Lelito JP; Myrick AJ; Baker TC
    J Chem Ecol; 2008 Jun; 34(6):725-33. PubMed ID: 18461401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive searching and infotaxis in odor source localization.
    Voges N; Chaffiol A; Lucas P; Martinez D
    PLoS Comput Biol; 2014 Oct; 10(10):e1003861. PubMed ID: 25330317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration-exploitation model of moth-inspired olfactory navigation.
    Lazebnik T; Golov Y; Gurka R; Harari A; Liberzon A
    J R Soc Interface; 2024 Jul; 21(216):20230746. PubMed ID: 39013419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-flight responses of Drosophila melanogaster to attractive odors.
    Budick SA; Dickinson MH
    J Exp Biol; 2006 Aug; 209(Pt 15):3001-17. PubMed ID: 16857884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of within-orchard trap placement on catch of codling moth (Lepidoptera: Tortricidae) in sex pheromone-treated orchards.
    Knight AL
    Environ Entomol; 2007 Apr; 36(2):425-32. PubMed ID: 17445378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics.
    Vickers NJ
    Chem Senses; 2006 Feb; 31(2):155-66. PubMed ID: 16339269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in odor-modulated flight by moths.
    Willis MA; Arbas EA
    J Comp Physiol A; 1998 Feb; 182(2):191-202. PubMed ID: 9463918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths.
    Vickers NJ; Baker TC
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5756-60. PubMed ID: 11607476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.