These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 17110002)

  • 1. Can ECOPATH with ECOSIM enhance models of radionuclide flows in food webs? An example for 14C in a coastal food web in the Baltic Sea.
    Sandberg J; Kumblad L; Kautsky U
    J Environ Radioact; 2007; 92(2):96-111. PubMed ID: 17110002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web.
    Niiranen S; Yletyinen J; Tomczak MT; Blenckner T; Hjerne O; Mackenzie BR; Müller-Karulis B; Neumann T; Meier HE
    Glob Chang Biol; 2013 Nov; 19(11):3327-42. PubMed ID: 23818413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North Seas.
    Lepicard S; Heling R; Maderich V
    J Environ Radioact; 2004; 72(1-2):153-61. PubMed ID: 15162867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.
    Kumblad L; Kautsky U; Naeslund B
    J Environ Radioact; 2006; 87(1):107-29. PubMed ID: 16406229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of climate and anthropogenic pressures on chemical warfare agent transfer in the Baltic Sea food web.
    Czub MJ; Silberberger MJ; Bełdowski J; Kotwicki L; Muller-Karulis B; Tomczak MT
    Sci Total Environ; 2024 Nov; 951():175455. PubMed ID: 39142412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling food-web mediated effects of hydrological variability and environmental flows.
    Robson BJ; Lester RE; Baldwin DS; Bond NR; Drouart R; Rolls RJ; Ryder DS; Thompson RM
    Water Res; 2017 Nov; 124():108-128. PubMed ID: 28750285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermodynamic perspective on food webs: quantifying entropy production within detrital-based ecosystems.
    Meysman FJ; Bruers S
    J Theor Biol; 2007 Nov; 249(1):124-39. PubMed ID: 17720204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaos in a long-term experiment with a plankton community.
    Benincà E; Huisman J; Heerkloss R; Jöhnk KD; Branco P; Van Nes EH; Scheffer M; Ellner SP
    Nature; 2008 Feb; 451(7180):822-5. PubMed ID: 18273017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainties in a Baltic sea food-web model reveal challenges for future projections.
    Niiranen S; Blenckner T; Hjerne O; Tomczak MT
    Ambio; 2012 Sep; 41(6):613-25. PubMed ID: 22926883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV effects on marine planktonic food webs: A synthesis of results from mesocosm studies.
    Belzile C; Demers S; Ferreyra GA; Schloss I; Nozais C; Lacoste K; Mostajir B; Roy S; Gosselin M; Pelletier E; Gianesella SM; Vernet M
    Photochem Photobiol; 2006; 82(4):850-6. PubMed ID: 16555926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regime shifts in marine communities: a complex systems perspective on food web dynamics.
    Yletyinen J; Bodin Ö; Weigel B; Nordström MC; Bonsdorff E; Blenckner T
    Proc Biol Sci; 2016 Feb; 283(1825):20152569. PubMed ID: 26888032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological food web analysis for chemical risk assessment.
    Preziosi DV; Pastorok RA
    Sci Total Environ; 2008 Dec; 406(3):491-502. PubMed ID: 18703218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiversity maintenance in food webs with regulatory environmental feedbacks.
    Bagdassarian CK; Dunham AE; Brown CG; Rauscher D
    J Theor Biol; 2007 Apr; 245(4):705-14. PubMed ID: 17240397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general model for food web structure.
    Allesina S; Alonso D; Pascual M
    Science; 2008 May; 320(5876):658-61. PubMed ID: 18451301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized models reveal stabilizing factors in food webs.
    Gross T; Rudolf L; Levin SA; Dieckmann U
    Science; 2009 Aug; 325(5941):747-50. PubMed ID: 19661430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Test and application of a general process-based dynamic coastal mass-balance model for contaminants using data for radionuclides in the Dnieper-Bug estuary.
    Håkanson L; Lindgren D
    Sci Total Environ; 2009 Jan; 407(2):899-916. PubMed ID: 19004470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling PCB bioaccumulation in a Baltic food web.
    Nfon E; Cousins IT
    Environ Pollut; 2007 Jul; 148(1):73-82. PubMed ID: 17291648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of stochastic population dynamics on food web structure.
    Powell CR; Boland RP
    J Theor Biol; 2009 Mar; 257(1):170-80. PubMed ID: 19084026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A landscape theory for food web architecture.
    Rooney N; McCann KS; Moore JC
    Ecol Lett; 2008 Aug; 11(8):867-81. PubMed ID: 18445027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring chemical effects on carbon flows in aquatic food webs: methodology and case study.
    De Laender F; Soetaert K; Middelburg JJ
    Environ Pollut; 2010 May; 158(5):1775-82. PubMed ID: 19954869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.