These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690 [TBL] [Abstract][Full Text] [Related]
4. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator. Namkung W; Kim KH; Lee MG Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066 [TBL] [Abstract][Full Text] [Related]
5. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Du K; Sharma M; Lukacs GL Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635 [TBL] [Abstract][Full Text] [Related]
6. Correctors promote folding of the CFTR in the endoplasmic reticulum. Loo TW; Bartlett MC; Clarke DM Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776 [TBL] [Abstract][Full Text] [Related]
7. Folding of CFTR is predominantly cotranslational. Kleizen B; van Vlijmen T; de Jonge HR; Braakman I Mol Cell; 2005 Oct; 20(2):277-87. PubMed ID: 16246729 [TBL] [Abstract][Full Text] [Related]
8. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Chen M; Zhang JT Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334 [TBL] [Abstract][Full Text] [Related]
9. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones. Wang Y; Bartlett MC; Loo TW; Clarke DM Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886 [TBL] [Abstract][Full Text] [Related]
10. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis. Bergbower E; Boinot C; Sabirzhanova I; Guggino W; Cebotaru L Cell Physiol Biochem; 2018; 45(2):639-655. PubMed ID: 29402832 [TBL] [Abstract][Full Text] [Related]
11. Identifying Inhibitors of the Hsp90-Aha1 Protein Complex, a Potential Target to Drug Cystic Fibrosis, by Alpha Technology. Ihrig V; Obermann WMJ SLAS Discov; 2017 Aug; 22(7):923-928. PubMed ID: 28346090 [TBL] [Abstract][Full Text] [Related]
13. Is it go or NO go for S-nitrosylation modification-based therapies of cystic fibrosis transmembrane regulator trafficking? Zeitlin PL Mol Pharmacol; 2006 Oct; 70(4):1155-8. PubMed ID: 16877677 [TBL] [Abstract][Full Text] [Related]
14. Role of calpain in the regulation of CFTR (cystic fibrosis transmembrane conductance regulator) turnover. Averna M; Stifanese R; Grosso R; Pedrazzi M; De Tullio R; Salamino F; Pontremoli S; Melloni E Biochem J; 2010 Sep; 430(2):255-63. PubMed ID: 20557290 [TBL] [Abstract][Full Text] [Related]
15. Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis? Amaral MD Pediatr Pulmonol; 2005 Jun; 39(6):479-91. PubMed ID: 15765539 [TBL] [Abstract][Full Text] [Related]
16. Endoplasmic reticulum-associated degradation of mutant CFTR requires a guanine nucleotide-sensitive step. De Keukeleire B; Micoud J; Biard J; Benharouga M Int J Biochem Cell Biol; 2008; 40(9):1729-42. PubMed ID: 18280771 [TBL] [Abstract][Full Text] [Related]
17. Misfolding of the cystic fibrosis transmembrane conductance regulator and disease. Cheung JC; Deber CM Biochemistry; 2008 Feb; 47(6):1465-73. PubMed ID: 18193900 [TBL] [Abstract][Full Text] [Related]
18. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. Sharma M; Pampinella F; Nemes C; Benharouga M; So J; Du K; Bache KG; Papsin B; Zerangue N; Stenmark H; Lukacs GL J Cell Biol; 2004 Mar; 164(6):923-33. PubMed ID: 15007060 [TBL] [Abstract][Full Text] [Related]