These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Bagdany M; Veit G; Fukuda R; Avramescu RG; Okiyoneda T; Baaklini I; Singh J; Sovak G; Xu H; Apaja PM; Sattin S; Beitel LK; Roldan A; Colombo G; Balch W; Young JC; Lukacs GL Nat Commun; 2017 Aug; 8(1):398. PubMed ID: 28855508 [TBL] [Abstract][Full Text] [Related]
25. A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability. Wellhauser L; Kim Chiaw P; Pasyk S; Li C; Ramjeesingh M; Bear CE Mol Pharmacol; 2009 Jun; 75(6):1430-8. PubMed ID: 19339490 [TBL] [Abstract][Full Text] [Related]
26. Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Robert R; Carlile GW; Pavel C; Liu N; Anjos SM; Liao J; Luo Y; Zhang D; Thomas DY; Hanrahan JW Mol Pharmacol; 2008 Feb; 73(2):478-89. PubMed ID: 17975008 [TBL] [Abstract][Full Text] [Related]
27. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Okiyoneda T; Barrière H; Bagdány M; Rabeh WM; Du K; Höhfeld J; Young JC; Lukacs GL Science; 2010 Aug; 329(5993):805-10. PubMed ID: 20595578 [TBL] [Abstract][Full Text] [Related]
28. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. Hutt DM; Roth DM; Chalfant MA; Youker RT; Matteson J; Brodsky JL; Balch WE J Biol Chem; 2012 Jun; 287(26):21914-25. PubMed ID: 22474283 [TBL] [Abstract][Full Text] [Related]
29. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Koulov AV; LaPointe P; Lu B; Razvi A; Coppinger J; Dong MQ; Matteson J; Laister R; Arrowsmith C; Yates JR; Balch WE Mol Biol Cell; 2010 Mar; 21(6):871-84. PubMed ID: 20089831 [TBL] [Abstract][Full Text] [Related]
30. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622. Norez C; Bilan F; Kitzis A; Mettey Y; Becq F J Pharmacol Exp Ther; 2008 Apr; 325(1):89-99. PubMed ID: 18230692 [TBL] [Abstract][Full Text] [Related]
31. N-terminal CFTR missense variants severely affect the behavior of the CFTR chloride channel. Gené GG; Llobet A; Larriba S; de Semir D; Martínez I; Escalada A; Solsona C; Casals T; Aran JM Hum Mutat; 2008 May; 29(5):738-49. PubMed ID: 18306312 [TBL] [Abstract][Full Text] [Related]
32. Folding Status Is Determinant over Traffic-Competence in Defining CFTR Interactors in the Endoplasmic Reticulum. Santos JD; Canato S; Carvalho AS; Botelho HM; Aloria K; Amaral MD; Matthiesen R; Falcao AO; Farinha CM Cells; 2019 Apr; 8(4):. PubMed ID: 31014000 [TBL] [Abstract][Full Text] [Related]
33. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. Gelman MS; Kannegaard ES; Kopito RR J Biol Chem; 2002 Apr; 277(14):11709-14. PubMed ID: 11812794 [TBL] [Abstract][Full Text] [Related]
34. A monoclonal antibody prevents aggregation of the NBD1 domain of the cystic fibrosis transmembrane conductance regulator. Lovato V; Roesli C; Ahlskog J; Scheuermann J; Neri D Protein Eng Des Sel; 2007 Dec; 20(12):607-14. PubMed ID: 18055505 [TBL] [Abstract][Full Text] [Related]
35. Chaperoning system: Intriguing target to modulate the expression of CFTR in cystic fibrosis. Scalia F; Culletta G; Barreca M; Caruso Bavisotto C; Bivacqua R; D'Amico G; Alberti G; Spanò V; Tutone M; Almerico AM; Cappello F; Montalbano A; Barraja P Eur J Med Chem; 2024 Nov; 278():116809. PubMed ID: 39226706 [TBL] [Abstract][Full Text] [Related]
36. Domain interdependence in the biosynthetic assembly of CFTR. Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596 [TBL] [Abstract][Full Text] [Related]
37. In vitro reconstitution of CFTR biogenesis and degradation. Oberdorf J; Skach WR Methods Mol Med; 2002; 70():295-310. PubMed ID: 11917531 [No Abstract] [Full Text] [Related]
38. Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Youker RT; Walsh P; Beilharz T; Lithgow T; Brodsky JL Mol Biol Cell; 2004 Nov; 15(11):4787-97. PubMed ID: 15342786 [TBL] [Abstract][Full Text] [Related]
39. Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. St Aubin CN; Zhou JJ; Linsdell P Mol Pharmacol; 2007 May; 71(5):1360-8. PubMed ID: 17293558 [TBL] [Abstract][Full Text] [Related]
40. Functional rescue of DeltaF508-CFTR by peptides designed to mimic sorting motifs. Kim Chiaw P; Huan LJ; Gagnon S; Ly D; Sweezey N; Rotin D; Deber CM; Bear CE Chem Biol; 2009 May; 16(5):520-30. PubMed ID: 19477416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]