These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 17110449)

  • 1. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation.
    Sethi G; Ahn KS; Pandey MK; Aggarwal BB
    Blood; 2007 Apr; 109(7):2727-35. PubMed ID: 17110449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion.
    Takada Y; Kobayashi Y; Aggarwal BB
    J Biol Chem; 2005 Apr; 280(17):17203-12. PubMed ID: 15710601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation.
    Sung B; Pandey MK; Aggarwal BB
    Mol Pharmacol; 2007 Jun; 71(6):1703-14. PubMed ID: 17387141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis.
    Sethi G; Ahn KS; Sung B; Aggarwal BB
    Mol Cancer Ther; 2008 Jun; 7(6):1604-14. PubMed ID: 18566231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products.
    Ichikawa H; Takada Y; Murakami A; Aggarwal BB
    J Immunol; 2005 Jun; 174(11):7383-92. PubMed ID: 15905586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-(4-hydroxyphenyl)retinamide inhibits invasion, suppresses osteoclastogenesis, and potentiates apoptosis through down-regulation of I(kappa)B(alpha) kinase and nuclear factor-kappaB-regulated gene products.
    Shishodia S; Gutierrez AM; Lotan R; Aggarwal BB
    Cancer Res; 2005 Oct; 65(20):9555-65. PubMed ID: 16230421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB regulated gene products.
    Ahn KS; Sethi G; Chao TH; Neuteboom ST; Chaturvedi MM; Palladino MA; Younes A; Aggarwal BB
    Blood; 2007 Oct; 110(7):2286-95. PubMed ID: 17609425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway.
    Pandey MK; Sung B; Ahn KS; Kunnumakkara AB; Chaturvedi MM; Aggarwal BB
    Blood; 2007 Nov; 110(10):3517-25. PubMed ID: 17673602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells.
    Shishodia S; Sethi G; Konopleva M; Andreeff M; Aggarwal BB
    Clin Cancer Res; 2006 Mar; 12(6):1828-38. PubMed ID: 16551868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IκBα kinase, leading to down-regulation of nuclear factor-κB (NF-κB)-regulated gene products and sensitization of tumor cells.
    Yadav VR; Prasad S; Gupta SC; Sung B; Phatak SS; Zhang S; Aggarwal BB
    J Biol Chem; 2012 Jan; 287(1):245-256. PubMed ID: 22065587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronarin D, a labdane diterpene, inhibits both constitutive and inducible nuclear factor-kappa B pathway activation, leading to potentiation of apoptosis, inhibition of invasion, and suppression of osteoclastogenesis.
    Kunnumakkara AB; Ichikawa H; Anand P; Mohankumar CJ; Hema PS; Nair MS; Aggarwal BB
    Mol Cancer Ther; 2008 Oct; 7(10):3306-17. PubMed ID: 18852134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Caryophyllene oxide potentiates TNFα-induced apoptosis and inhibits invasion through down-modulation of NF-κB-regulated gene products.
    Kim C; Cho SK; Kim KD; Nam D; Chung WS; Jang HJ; Lee SG; Shim BS; Sethi G; Ahn KS
    Apoptosis; 2014 Apr; 19(4):708-18. PubMed ID: 24370994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents.
    Sandur SK; Ichikawa H; Sethi G; Ahn KS; Aggarwal BB
    J Biol Chem; 2006 Jun; 281(25):17023-17033. PubMed ID: 16624823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells.
    Takada Y; Andreeff M; Aggarwal BB
    Blood; 2005 Jul; 106(2):641-9. PubMed ID: 15811958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suberoylanilide hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing nuclear factor-kappaB activation.
    Takada Y; Gillenwater A; Ichikawa H; Aggarwal BB
    J Biol Chem; 2006 Mar; 281(9):5612-22. PubMed ID: 16377638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation.
    Aggarwal S; Ichikawa H; Takada Y; Sandur SK; Shishodia S; Aggarwal BB
    Mol Pharmacol; 2006 Jan; 69(1):195-206. PubMed ID: 16219905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein farnesyltransferase inhibitor (SCH 66336) abolishes NF-kappaB activation induced by various carcinogens and inflammatory stimuli leading to suppression of NF-kappaB-regulated gene expression and up-regulation of apoptosis.
    Takada Y; Khuri FR; Aggarwal BB
    J Biol Chem; 2004 Jun; 279(25):26287-99. PubMed ID: 15090542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-kappaB activation pathway.
    Ahn KS; Sethi G; Shishodia S; Sung B; Arbiser JL; Aggarwal BB
    Mol Cancer Res; 2006 Sep; 4(9):621-33. PubMed ID: 16966432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis.
    Pandey MK; Sung B; Kunnumakkara AB; Sethi G; Chaturvedi MM; Aggarwal BB
    Cancer Res; 2008 Jul; 68(13):5370-9. PubMed ID: 18593939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion.
    Takada Y; Murakami A; Aggarwal BB
    Oncogene; 2005 Oct; 24(46):6957-69. PubMed ID: 16007145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.