These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17110483)

  • 1. A genetic screen in Drosophila for genes interacting with senseless during neuronal development identifies the importin moleskin.
    Pepple KL; Anderson AE; Frankfort BJ; Mardon G
    Genetics; 2007 Jan; 175(1):125-41. PubMed ID: 17110483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Senseless is required for pupal retinal development in Drosophila.
    Frankfort BJ; Pepple KL; Mamlouk M; Rose MF; Mardon G
    Genesis; 2004 Apr; 38(4):182-94. PubMed ID: 15083519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development.
    Vrailas-Mortimer AD; Majumdar N; Middleton G; Cooke EM; Marenda DR
    Dev Biol; 2007 Aug; 308(2):534-46. PubMed ID: 17628519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-step selection of a single R8 photoreceptor: a bistable loop between senseless and rough locks in R8 fate.
    Pepple KL; Atkins M; Venken K; Wellnitz K; Harding M; Frankfort B; Mardon G
    Development; 2008 Dec; 135(24):4071-9. PubMed ID: 19004852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. senseless repression of rough is required for R8 photoreceptor differentiation in the developing Drosophila eye.
    Frankfort BJ; Nolo R; Zhang Z; Bellen H; Mardon G
    Neuron; 2001 Nov; 32(3):403-14. PubMed ID: 11709152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary cell fate decisions and fate transformation in the Drosophila larval eye.
    Mishra AK; Tsachaki M; Rister J; Ng J; Celik A; Sprecher SG
    PLoS Genet; 2013; 9(12):e1004027. PubMed ID: 24385925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycomb group genes are required to maintain a binary fate choice in the Drosophila eye.
    Finley JK; Miller AC; Herman TG
    Neural Dev; 2015 Jan; 10():2. PubMed ID: 25636358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Conserved MAPK Site in E(spl)-M8, an Effector of Drosophila Notch Signaling, Controls Repressor Activity during Eye Development.
    Bandyopadhyay M; Bishop CP; Bidwai AP
    PLoS One; 2016; 11(7):e0159508. PubMed ID: 27428327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groucho restricts rhomboid expression and couples EGFR activation with R8 selection during Drosophila photoreceptor differentiation.
    Zhang T; Du W
    Dev Biol; 2015 Nov; 407(2):246-55. PubMed ID: 26417727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons.
    Morey M; Yee SK; Herman T; Nern A; Blanco E; Zipursky SL
    Nature; 2008 Dec; 456(7223):795-9. PubMed ID: 18978774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye.
    Sukhanova MJ; Steele LJ; Zhang T; Gordon GM; Du W
    Dev Biol; 2011 Nov; 359(2):190-8. PubMed ID: 21920355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthodenticle Is Required for the Expression of Principal Recognition Molecules That Control Axon Targeting in the Drosophila Retina.
    Mencarelli C; Pichaud F
    PLoS Genet; 2015 Jun; 11(6):e1005303. PubMed ID: 26114289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moleskin is essential for the formation of the myotendinous junction in Drosophila.
    Liu ZC; Geisbrecht ER
    Dev Biol; 2011 Nov; 359(2):176-89. PubMed ID: 21925492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina.
    Wernet MF; Desplan C
    Development; 2014 Feb; 141(4):918-28. PubMed ID: 24496628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senseless functions as a molecular switch for color photoreceptor differentiation in Drosophila.
    Xie B; Charlton-Perkins M; McDonald E; Gebelein B; Cook T
    Development; 2007 Dec; 134(23):4243-53. PubMed ID: 17978002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of transient hypermorphic activity of E(spl)D during R8 specification.
    Majot AT; Bidwai AP
    PLoS One; 2017; 12(10):e0186439. PubMed ID: 29036187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila.
    Lim J; Choi KW
    Development; 2004 Nov; 131(22):5573-80. PubMed ID: 15496446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila R8 photoreceptor cell subtype specification requires hibris.
    Tan H; Fulton RE; Chou WH; Birkholz DA; Mannino MP; Yamaguchi DM; Aldrich JC; Jacobsen TL; Britt SG
    PLoS One; 2020; 15(10):e0240451. PubMed ID: 33052948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of R7 and R8 differentiation by the spalt genes.
    Domingos PM; Brown S; Barrio R; Ratnakumar K; Frankfort BJ; Mardon G; Steller H; Mollereau B
    Dev Biol; 2004 Sep; 273(1):121-33. PubMed ID: 15302602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification.
    Aerts S; Quan XJ; Claeys A; Naval Sanchez M; Tate P; Yan J; Hassan BA
    PLoS Biol; 2010 Jul; 8(7):e1000435. PubMed ID: 20668662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.