BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17110738)

  • 1. Time-dependent, layer-specific modulation of sensory responses mediated by neocortical layer 1.
    Shlosberg D; Amitai Y; Azouz R
    J Neurophysiol; 2006 Dec; 96(6):3170-82. PubMed ID: 17110738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex.
    Zhu Y; Zhu JJ
    J Neurosci; 2004 Feb; 24(6):1272-9. PubMed ID: 14960597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats.
    Drouin C; Page M; Waterhouse B
    J Neurophysiol; 2006 Aug; 96(2):622-32. PubMed ID: 16687613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4.
    Gibson JR; Beierlein M; Connors BW
    J Neurophysiol; 2005 Jan; 93(1):467-80. PubMed ID: 15317837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent maturation of excitatory synaptic connections in solitary neuron cultures of mouse neocortex.
    Takada N; Yanagawa Y; Komatsu Y
    Eur J Neurosci; 2005 Jan; 21(2):422-30. PubMed ID: 15673441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites.
    Egger R; Schmitt AC; Wallace DJ; Sakmann B; Oberlaender M; Kerr JN
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14072-7. PubMed ID: 26512104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
    Kuo MC; Rasmusson DD; Dringenberg HC
    Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C.
    Scott HL; Braud S; Bannister NJ; Isaac JT
    Neuropharmacology; 2007 Jan; 52(1):185-92. PubMed ID: 16890249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex.
    Wilent WB; Contreras D
    Nat Neurosci; 2005 Oct; 8(10):1364-70. PubMed ID: 16158064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits.
    Schubert D; Kötter R; Staiger JF
    Brain Struct Funct; 2007 Sep; 212(2):107-19. PubMed ID: 17717691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation, labile, and stabilization phases of experience-dependent plasticity at neocortical synapses.
    Wen JA; DeBlois MC; Barth AL
    J Neurosci; 2013 May; 33(19):8483-93. PubMed ID: 23658185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex.
    Dong H; Shao Z; Nerbonne JM; Burkhalter A
    J Comp Neurol; 2004 Jul; 475(3):361-73. PubMed ID: 15221951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs.
    Lee CM; Chang WC; Chang KB; Shyu BC
    Eur J Neurosci; 2007 May; 25(9):2847-61. PubMed ID: 17561847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depression of retinogeniculate synaptic transmission by presynaptic D(2)-like dopamine receptors in rat lateral geniculate nucleus.
    Govindaiah G; Cox CL
    Eur J Neurosci; 2006 Jan; 23(2):423-34. PubMed ID: 16420449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex.
    Lefort S; Tomm C; Floyd Sarria JC; Petersen CC
    Neuron; 2009 Jan; 61(2):301-16. PubMed ID: 19186171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate.
    Staiger JF; Kötter R; Zilles K; Luhmann HJ
    Neurosci Res; 2000 May; 37(1):49-58. PubMed ID: 10802343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential correlates of sensory perception in mouse barrel cortex.
    Sachidhanandam S; Sreenivasan V; Kyriakatos A; Kremer Y; Petersen CC
    Nat Neurosci; 2013 Nov; 16(11):1671-7. PubMed ID: 24097038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamines modulate AMPA receptor-dependent synaptic responses in immature layer v pyramidal neurons.
    Shin J; Shen F; Huguenard JR
    J Neurophysiol; 2005 May; 93(5):2634-43. PubMed ID: 15574796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
    Jacob V; Brasier DJ; Erchova I; Feldman D; Shulz DE
    J Neurosci; 2007 Feb; 27(6):1271-84. PubMed ID: 17287502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.