These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17110781)

  • 1. Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model.
    Sebastián JL; Muñoz S; Sancho M; Miranda JM
    Phys Med Biol; 2006 Dec; 51(23):6213-24. PubMed ID: 17110781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling normal and altered human erythrocyte shapes by a new parametric equation: application to the calculation of induced transmembrane potentials.
    Muñoz San Martín S; Sebastián JL; Sancho M; Alvarez G
    Bioelectromagnetics; 2006 Oct; 27(7):521-7. PubMed ID: 16715527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells.
    Sebastián JL; Muñoz S; Sancho M; Alvarez G; Miranda JM
    Phys Med Biol; 2007 Dec; 52(23):6831-47. PubMed ID: 18029978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting shape and spontaneous membrane curvature of red blood cells.
    Pozrikidis C
    Math Med Biol; 2005 Mar; 22(1):34-52. PubMed ID: 15716299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane.
    Di Biasio A; Cametti C
    Bioelectrochemistry; 2005 Feb; 65(2):163-9. PubMed ID: 15713568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarizability of red blood cells with an anisotropic membrane.
    Sebastián JL; Muñoz S; Sancho M; Martínez G; Kaler KV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):022901. PubMed ID: 20365616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Membrane organization in the plane of the layer and cell shape. Statistical approach].
    Markin VS
    Biofizika; 1980; 25(5):941-52. PubMed ID: 7417587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields.
    Muñoz S; Sebastián JL; Sancho M; Miranda JM
    Bioelectromagnetics; 2004 Dec; 25(8):631-3. PubMed ID: 15515030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic strength and outer surface charge on the mechanical stability of the erythrocyte membrane: a linear hydrodynamic analysis.
    Cortez-Maghelly C; Bisch PM
    J Theor Biol; 1995 Oct; 176(3):325-39. PubMed ID: 8538215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Light birefringence and molecular orientation in erythrocyte membranes and surface layers].
    Saakian ShS; Asratian MG; Davivanian AK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1986; (9):23-7. PubMed ID: 3778977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic models and phenomenological analysis of passive lipid translocation in single-file.
    Frickenhaus S; Heinrich R
    J Theor Biol; 1999 Mar; 197(2):175-91. PubMed ID: 10074392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The erythrocyte as a physical system. The kinetics of transmembrane oxygen transport].
    Fok MV; Zaritskiĭ AR; Prokopenko GA; Grachev VI
    Zh Obshch Biol; 1994; 55(4-5):583-612. PubMed ID: 7975888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential distribution for a spheroidal cell having a conductive membrane in an electric field.
    Jerry RA; Popel AS; Brownell WE
    IEEE Trans Biomed Eng; 1996 Sep; 43(9):970-2. PubMed ID: 9214813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical model of reticulocyte to erythrocyte shape transformation.
    Pawlowski PH; Burzyńska B; Zielenkiewicz P
    J Theor Biol; 2006 Nov; 243(1):24-38. PubMed ID: 16876199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear instability analysis and mechanical interfacial tension.
    Soares KM; Maghelly CC
    J Theor Biol; 1999 Jan; 196(2):169-79. PubMed ID: 10049614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell electroporation: estimation of the number of pores and their sizes.
    Saulis G
    Biomed Sci Instrum; 1999; 35():291-6. PubMed ID: 11143365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical predictions of electromechanical deformation of cells subjected to high voltages for membrane electroporation.
    Joshi RP; Hu Q; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021913. PubMed ID: 11863569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.