These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17110914)

  • 41. Cyclosporine, low-density lipoprotein, and cholesterol.
    de Groen PC
    Mayo Clin Proc; 1988 Oct; 63(10):1012-21. PubMed ID: 3172850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative characterizations of the cholesterol-related pathways in the retina and brain of hamsters.
    Mast N; El-Darzi N; Li Y; Pikuleva IA
    J Lipid Res; 2023 Jul; 64(7):100401. PubMed ID: 37330011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Naturally occurring antibodies to cholesterol: a new theory of LDL cholesterol metabolism.
    Alving CR; Wassef NM
    Immunol Today; 1999 Aug; 20(8):362-6. PubMed ID: 10431156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vesicle-reconstituted low density lipoprotein receptor. Visualization by cryoelectron microscopy.
    Jeon H; Shipley GG
    J Biol Chem; 2000 Sep; 275(39):30458-64. PubMed ID: 10889196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cholesterol homeostasis in the vertebrate retina: biology and pathobiology.
    Ramachandra Rao S; Fliesler SJ
    J Lipid Res; 2021; 62():100057. PubMed ID: 33662384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis.
    Lin JB; Mast N; Bederman IR; Li Y; Brunengraber H; Björkhem I; Pikuleva IA
    J Lipid Res; 2016 Feb; 57(2):258-64. PubMed ID: 26630912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drug targeting by endogenous transport vehicles.
    van Berkel TJ; de Smidt PC; van Dijk MC; Ziere GJ; Bijsterbosch MK
    Biochem Soc Trans; 1990 Oct; 18(5):748-50. PubMed ID: 2083665
    [No Abstract]   [Full Text] [Related]  

  • 48. Photochemistry and photophysics of cholesta-5,7,9(11)-trien-3β-ol: a fluorescent analogue of cholesterol.
    Saltiel J; Krishnan SB; Gupta S; Hernberg EA; Clark RJ
    Photochem Photobiol Sci; 2022 Jan; 21(1):37-47. PubMed ID: 35000147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The metabolism of the fluorescent probe cholesta-5,7,9(11)-trien-3 beta-ol by rat liver.
    Wilton DC
    Biochem J; 1982 Nov; 208(2):521-3. PubMed ID: 7159414
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative fluorescence co-localization to study protein-receptor complexes.
    Pompey SN; Michaely P; Luby-Phelps K
    Methods Mol Biol; 2013; 1008():439-53. PubMed ID: 23729262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-Density Lipoprotein Pathway Is a Ubiquitous Metabolic Vulnerability in High Grade Glioma Amenable for Nanotherapeutic Delivery.
    Adekeye AO; Needham D; Rahman R
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies.
    Barrett PH; Bell BM; Cobelli C; Golde H; Schumitzky A; Vicini P; Foster DM
    Metabolism; 1998 Apr; 47(4):484-92. PubMed ID: 9550550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Development of LDL-Based Nanoparticles for Cancer Therapy.
    He B; Yang Q
    Pharmaceuticals (Basel); 2022 Dec; 16(1):. PubMed ID: 36678515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photochemistry and Photophysics of Cholesta-5,7,9(11)-trien-3β-ol in Ethanol.
    Saltiel J; Krishnan SB; Gupta S; Chakraborty A; Hilinski EF; Lin X
    Molecules; 2023 May; 28(10):. PubMed ID: 37241827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low density lipoprotein bionanoparticles: From cholesterol transport to delivery of anti-cancer drugs.
    Harisa GI; Alanazi FK
    Saudi Pharm J; 2014 Dec; 22(6):504-15. PubMed ID: 25561862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cholesterol homeostasis: role of the LDL receptor.
    Javitt NB
    FASEB J; 1995 Oct; 9(13):1378-81. PubMed ID: 7557029
    [No Abstract]   [Full Text] [Related]  

  • 57. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors.
    Tserentsoodol N; Gordiyenko NV; Pascual I; Lee JW; Fliesler SJ; Rodriguez IR
    Mol Vis; 2006 Oct; 12():1319-33. PubMed ID: 17110915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration.
    Johnson LV; Forest DL; Banna CD; Radeke CM; Maloney MA; Hu J; Spencer CN; Walker AM; Tsie MS; Bok D; Radeke MJ; Anderson DH
    Proc Natl Acad Sci U S A; 2011 Nov; 108(45):18277-82. PubMed ID: 21969589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lipid nanoparticles for delivery of messenger RNA to the back of the eye.
    Patel S; Ryals RC; Weller KK; Pennesi ME; Sahay G
    J Control Release; 2019 Jun; 303():91-100. PubMed ID: 30986436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Temporal Association between Regression of Pachydrusen and Use of Proprotein Convertase Subtilisin Kexin 9 Inhibitor: A Case Report.
    Chantarasorn Y; Funilkul K
    Case Rep Ophthalmol; 2024; 15(1):614-620. PubMed ID: 39144648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.