BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 17111212)

  • 1. Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control.
    Kim J; Saidel GM; Cabrera ME
    Ann Biomed Eng; 2007 Jan; 35(1):69-90. PubMed ID: 17111212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model of glucose homeostasis during exercise.
    Kim J; Saidel GM; Kirwan JP; Cabrera ME
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():311-4. PubMed ID: 17946814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.
    Stellingwerff T; Spriet LL; Watt MJ; Kimber NE; Hargreaves M; Hawley JA; Burke LM
    Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E380-8. PubMed ID: 16188909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling cellular metabolism and energetics in skeletal muscle: large-scale parameter estimation and sensitivity analysis.
    Dash RK; Li Y; Kim J; Saidel GM; Cabrera ME
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1298-318. PubMed ID: 18390321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distributed model of carbohydrate transport and metabolism in the liver during rest and high-intensity exercise.
    Chalhoub E; Xie L; Balasubramanian V; Kim J; Belovich J
    Ann Biomed Eng; 2007 Mar; 35(3):474-91. PubMed ID: 17151925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redistribution of whole-body energy metabolism by exercise: a positron emission tomography study.
    Masud MM; Fujimoto T; Miyake M; Watanuki S; Itoh M; Tashiro M
    Ann Nucl Med; 2009 Jan; 23(1):81-8. PubMed ID: 19205842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle.
    Gustafson KJ; Marinache SM; Egrie GD; Reichenbach SH
    Ann Biomed Eng; 2006 May; 34(5):790-8. PubMed ID: 16598656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dodecanedioic acid overcomes metabolic inflexibility in type 2 diabetic subjects.
    Salinari S; Bertuzzi A; Gandolfi A; Greco AV; Scarfone A; Manco M; Mingrone G
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1051-8. PubMed ID: 16787959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in people with impaired glucose homeostasis and is not normalized by exercise training.
    Bradley SJ; Kingwell BA; Canny BJ; McConell GK
    Metabolism; 2007 Oct; 56(10):1405-11. PubMed ID: 17884453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative mechanisms at rest and during exercise.
    Ghanassia E; Brun JF; Mercier J; Raynaud E
    Clin Chim Acta; 2007 Aug; 383(1-2):1-20. PubMed ID: 17544388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise.
    Shearer J; Fueger PT; Rottman JN; Bracy DP; Binas B; Wasserman DH
    Am J Physiol Endocrinol Metab; 2005 Feb; 288(2):E292-7. PubMed ID: 15454399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The selfish brain: competition for energy resources.
    Peters A; Schweiger U; Pellerin L; Hubold C; Oltmanns KM; Conrad M; Schultes B; Born J; Fehm HL
    Neurosci Biobehav Rev; 2004 Apr; 28(2):143-80. PubMed ID: 15172762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic responses to moderate exercise in lambs with aortopulmonary shunts.
    Beaufort-Krol GC; Takens J; Zijlstra WG; Molenkamp MC; Gerding AM; Kuipers JR
    Metabolism; 2001 Apr; 50(4):399-406. PubMed ID: 11288033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fat and carbohydrate for exercise.
    Burke LM; Hawley JA
    Curr Opin Clin Nutr Metab Care; 2006 Jul; 9(4):476-81. PubMed ID: 16778580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid and protein metabolism during exercise and recovery.
    Brooks GA
    Med Sci Sports Exerc; 1987 Oct; 19(5 Suppl):S150-6. PubMed ID: 3316914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Notion of metabolic adaptation to exercise].
    Mercier J; Desplan J
    Rev Pneumol Clin; 1997; 53(5):231-7. PubMed ID: 9616836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle glycogen and metabolic regulation.
    Hargreaves M
    Proc Nutr Soc; 2004 May; 63(2):217-20. PubMed ID: 15294033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AMP-activated protein kinase: more than an energy sensor.
    Hue L; Rider MH
    Essays Biochem; 2007; 43():121-37. PubMed ID: 17705797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin-converting enzyme in skeletal muscle: sentinel of blood pressure control and glucose homeostasis.
    Dietze GJ; Henriksen EJ
    J Renin Angiotensin Aldosterone Syst; 2008 Jun; 9(2):75-88. PubMed ID: 18584583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.