BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17111227)

  • 1. Microporated PEG spheres for fluorescent analyte detection.
    Rounds RM; Ibey BL; Beier HT; Pishko MV; Coté GL
    J Fluoresc; 2007 Jan; 17(1):57-63. PubMed ID: 17111227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.
    Russell RJ; Pishko MV; Gefrides CC; McShane MJ; Coté GL
    Anal Chem; 1999 Aug; 71(15):3126-32. PubMed ID: 10450158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-sensitive nanoassemblies comprising affinity-binding complexes trapped in fuzzy microshells.
    Chinnayelka S; McShane MJ
    J Fluoresc; 2004 Sep; 14(5):585-95. PubMed ID: 15617265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorometric determination of sugars using fluorescein-labeled concanavalin A-glycogen conjugates.
    Sato K; Anzai J
    Anal Bioanal Chem; 2006 Mar; 384(6):1297-301. PubMed ID: 16477422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraocular lens glucose sensor.
    March WF; Ochsner K; Horna J
    Diabetes Technol Ther; 2000; 2(1):27-30. PubMed ID: 11467316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing.
    Schulz A; Hornig S; Liebert T; Birckner E; Heinze T; Mohr GJ
    Org Biomol Chem; 2009 May; 7(9):1884-9. PubMed ID: 19590784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of pH-sensitive poly(β-amino ester)-graft-poly(ethylene glycol) and its usefulness as a pH-sensor and protein carrier.
    Kim MS; Gao GH; Kang SW; Lee DS
    Macromol Biosci; 2011 Jul; 11(7):946-51. PubMed ID: 21500351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer fluorescence optically encoded beads for protein detection.
    Jun BH; Rho C; Byun JW; Kim JH; Chung WJ; Kang H; Park J; Cho SH; Kim BG; Lee YS
    Anal Biochem; 2010 Jan; 396(2):313-5. PubMed ID: 19766091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres.
    Cummin BM; Lim J; Simanek EE; Pishko MV; Coté GL
    Biomed Opt Express; 2011 Apr; 2(5):1243-57. PubMed ID: 21559135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent.
    Chen X; Zhang X; Wang HY; Chen Z; Wu FG
    Langmuir; 2016 Oct; 32(39):10126-10135. PubMed ID: 27597442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence lifetime spectroscopy of a pH-sensitive dye encapsulated in hydrogel beads.
    Kuwana E; Liang F; Sevick-Muraca EM
    Biotechnol Prog; 2004; 20(5):1561-6. PubMed ID: 15458344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of macroporous poly(ethylene glycol) hydrogel arrays within microfluidic channels.
    Lee AG; Arena CP; Beebe DJ; Palecek SP
    Biomacromolecules; 2010 Dec; 11(12):3316-24. PubMed ID: 21028794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Injectable PEG-BSA-Coumarin-GOx Hydrogel for Fluorescence Turn-on Glucose Detection.
    Srinivasan G; Chen J; Parisi J; Brückner C; Yao X; Lei Y
    Appl Biochem Biotechnol; 2015 Nov; 177(5):1115-26. PubMed ID: 26288081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres.
    Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers.
    Nam K; Watanabe J; Ishihara K
    Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation.
    Liu EY; Jung S; Weitz DA; Yi H; Choi CH
    Lab Chip; 2018 Jan; 18(2):323-334. PubMed ID: 29242870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.
    Mao S; Xu J; Cai C; Germershaus O; Schaper A; Kissel T
    Int J Pharm; 2007 Apr; 334(1-2):137-48. PubMed ID: 17196348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.