These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17111227)

  • 41. The preparation of dextran microspheres in an all-aqueous system: effect of the formulation parameters on particle characteristics.
    Stenekes RJ; Franssen O; van Bommel EM; Crommelin DJ; Hennink WE
    Pharm Res; 1998 Apr; 15(4):557-61. PubMed ID: 9587951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics.
    Gamsey S; Suri JT; Wessling RA; Singaram B
    Langmuir; 2006 Oct; 22(21):9067-74. PubMed ID: 17014156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macromolecular crowding improves polymer encapsulation within giant lipid vesicles.
    Dominak LM; Keating CD
    Langmuir; 2008 Dec; 24(23):13565-71. PubMed ID: 18980360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens.
    Khansari S; Duzyer S; Sinha-Ray S; Hockenberger A; Yarin AL; Pourdeyhimi B
    Mol Pharm; 2013 Dec; 10(12):4509-26. PubMed ID: 24191694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching.
    Sokic S; Christenson M; Larson J; Papavasiliou G
    Macromol Biosci; 2014 May; 14(5):731-9. PubMed ID: 24443002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules.
    Watkins KA; Chen R
    Int J Pharm; 2015 Jan; 478(2):496-503. PubMed ID: 25490181
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dextran-based self-healing hydrogels formed by reversible diels-alder reaction under physiological conditions.
    Wei Z; Yang JH; Du XJ; Xu F; Zrinyi M; Osada Y; Li F; Chen YM
    Macromol Rapid Commun; 2013 Sep; 34(18):1464-70. PubMed ID: 23929621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.
    Tong X; Lee S; Bararpour L; Yang F
    Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release.
    Zhang JT; Keller TF; Bhat R; Garipcan B; Jandt KD
    Acta Biomater; 2010 Oct; 6(10):3890-8. PubMed ID: 20466078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of porous PEG microgels using CaCO3 microspheres as hard templates.
    Behra M; Schmidt S; Hartmann J; Volodkin DV; Hartmann L
    Macromol Rapid Commun; 2012 Jun; 33(12):1049-54. PubMed ID: 22392732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Macromolecule release from monodisperse PLG microspheres: control of release rates and investigation of release mechanism.
    Berkland C; Pollauf E; Raman C; Silverman R; Kim K'; Pack DW
    J Pharm Sci; 2007 May; 96(5):1176-91. PubMed ID: 17455338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and characterization of sol-gel phase-reversible hydrogels sensitive to glucose.
    Lee SJ; Park K
    J Mol Recognit; 1996; 9(5-6):549-57. PubMed ID: 9174939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion.
    Golmohamadi M; Wilkinson KJ
    Carbohydr Polym; 2013 Apr; 94(1):82-7. PubMed ID: 23544513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of Crescent Shaped Microparticles for Particle Templated Droplet Formation.
    Yang Y; Vagin SI; Rieger B; Destgeer G
    Macromol Rapid Commun; 2024 Jul; 45(13):e2300721. PubMed ID: 38615246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence.
    Huang H; Chauhan S; Geng J; Qin Y; Watson DF; Lovell JF
    Biomacromolecules; 2017 Feb; 18(2):562-567. PubMed ID: 28146351
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
    Yang T; Ji R; Deng XX; Du FS; Li ZC
    Soft Matter; 2014 Apr; 10(15):2671-8. PubMed ID: 24647364
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of the covalent modification with poly(ethylene glycol) on alpha-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic) microspheres.
    Castellanos IJ; Al-Azzam W; Griebenow K
    J Pharm Sci; 2005 Feb; 94(2):327-40. PubMed ID: 15570602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antifouling surfaces for proteins labeled with dye-doped silica nanoparticles.
    Wang H; Tong Q; Yan M
    Anal Chem; 2013 Jan; 85(1):23-7. PubMed ID: 23236953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucose-responsive microhydrogels based on methacrylate modified dextran/concanavalin A for insulin delivery.
    Yin R; Tong Z; Yang D; Nie J
    J Control Release; 2011 Nov; 152 Suppl 1():e163-5. PubMed ID: 22195824
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.