BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17111228)

  • 1. Derivation and left ventricular pressure phase plane based validation of a time dependent isometric crossbridge attachment model.
    Zhang W; Chung CS; Kovács SJ
    Cardiovasc Eng; 2006 Dec; 6(4):132-44. PubMed ID: 17111228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explaining load dependence of ventricular contractile properties with a model of excitation-contraction coupling.
    Burkhoff D
    J Mol Cell Cardiol; 1994 Aug; 26(8):959-78. PubMed ID: 7799451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Curve-fits with hybrid logistic functions for isovolumic left ventricular pressure curve and isometric myocardial tension curve].
    Mizuno J; Morita S; Araki J; Otsuji M; Hanaoka K; Kurihara S
    Masui; 2008 Dec; 57(12):1472-84. PubMed ID: 19108490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the solutions of Huxley-type models in cardiac muscle fiber contractions.
    Taylor TW; Goto Y; Suga H
    J Theor Biol; 1993 Dec; 165(3):409-16. PubMed ID: 8114504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cross-bridge dynamics during ventricular contraction predicted by coupling the cardiac cell model with a circulation model.
    Shim EB; Amano A; Takahata T; Shimayoshi T; Noma A
    J Physiol Sci; 2007 Oct; 57(5):275-85. PubMed ID: 17916279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure phase-plane based determination of the onset of left ventricular relaxation.
    Chung CS; Kovács SJ
    Cardiovasc Eng; 2007 Dec; 7(4):162-71. PubMed ID: 18026836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypovolemia does not affect speed of isovolumic left ventricular contraction and relaxation in excised canine heart.
    Mizuno J; Shimizu J; Mohri S; Araki J; Hanaoka K; Yamada Y
    Shock; 2008 Mar; 29(3):395-401. PubMed ID: 17693939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships.
    Campbell KB; Simpson AM; Campbell SG; Granzier HL; Slinker BK
    J Appl Physiol (1985); 2008 Apr; 104(4):958-75. PubMed ID: 18048589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    J Biomech; 1993 Oct; 26(10):1217-25. PubMed ID: 8253826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle.
    Rice JJ; de Tombe PP
    Prog Biophys Mol Biol; 2004; 85(2-3):179-95. PubMed ID: 15142743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myocardial adaptation to stress from the viewpoint of adaptation and development.
    Hasenfuss G; Mulieri LA; Holubarsch C; Blanchard EM; Just H; Alpert NR
    Basic Res Cardiol; 1993; 88 Suppl 2():91-102. PubMed ID: 8147839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systolic modeling of the left ventricle as a mechatronic system: determination of myocardial fiber's sarcomere contractile characteristics and new performance indices.
    Ghista DN; Zhong L; Chua LP; Ng EY; Lim ST; Tan RS; Chua TS
    Mol Cell Biomech; 2005 Dec; 2(4):217-33. PubMed ID: 16705867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration and elongation of attached cross-bridges as pressure determinants in a ventricular model.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 1999 Aug; 31(8):1509-26. PubMed ID: 10423349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of relations between the kinetics of free intracellular calcium and mechanical function of myocardium.
    Katsnelson LB; Markhasin VS
    J Mol Cell Cardiol; 1996 Mar; 28(3):475-86. PubMed ID: 9011631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of dsigma*/dt (max), a load independent index of contractility, in the canine.
    Black A; Grenz N; Niccole S; Arndt P; Lucht J; Nesvig K; Ewert D; Mulligan L
    Cardiovasc Eng; 2009 Jun; 9(2):49-55. PubMed ID: 19466542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of myofilament activation mechanics into a lumped model of the human heart.
    Deserranno D; Kassemi M; Thomas JD
    Ann Biomed Eng; 2007 Mar; 35(3):321-36. PubMed ID: 17219084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 2008 Aug; 45(2):300-12. PubMed ID: 18550079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Novel assessment of intracellular calcium transient decay in cardiac muscle by curve-fitting with half-logistic function].
    Mizuno J; Arita H; Hanaoka K; Kusakari Y; Kurihara S
    Masui; 2008 Apr; 57(4):408-19. PubMed ID: 18416193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.