These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1711164)

  • 41. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 42. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH; Meier PJ; Aronson PS; Boyer JL
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transport of glutamine in rat intestinal brush-border membrane vesicles.
    Van Voorhis K; Said HM; Ghishan FK; Abumrad NN
    Biochim Biophys Acta; 1989 Jan; 978(1):51-5. PubMed ID: 2492432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry.
    Smith JB; Rozengurt E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5560-4. PubMed ID: 82969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophysiology of plasma membrane vesicles.
    Wright EM
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F363-72. PubMed ID: 6372509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potassium transport in opossum kidney cells: effects of Na-selective and K-selective ionizable cryptands, and of valinomycin, FCCP and nystatin.
    Loiseau A; Leroy C; Castaing M
    Biochim Biophys Acta; 1997 Nov; 1330(1):39-49. PubMed ID: 9375811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antibiotics as tools for studying the electrical properties of tight epithelia.
    Wills NK
    Fed Proc; 1981 Jun; 40(8):2202-5. PubMed ID: 6165622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Na+-dependent, potential-sensitive L-ascorbate transport across brush border membrane vesicles from kidney cortex.
    Toggenburger G; Häusermann M; Mütsch B; Genoni G; Kessler M; Weber F; Hornig D; O'Neill B; Semenza G
    Biochim Biophys Acta; 1981 Sep; 646(3):433-43. PubMed ID: 7284371
    [No Abstract]   [Full Text] [Related]  

  • 49. Intracellular ascorbic acid inhibits the Na(+)-Ca2+ exchanger in cultured rat astrocytes.
    Takuma K; Matsuda T; Asano S; Baba A
    J Neurochem; 1995 Apr; 64(4):1536-40. PubMed ID: 7891080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction between dopamine and its transporter: role of intracellular sodium ions and membrane potential.
    Chen N; Reith ME
    J Neurochem; 2004 May; 89(3):750-65. PubMed ID: 15086531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ascorbate uptake by isolated rat alveolar macrophages and type II cells.
    Castranova V; Wright JR; Colby HD; Miles PR
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jan; 54(1):208-14. PubMed ID: 6826406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport.
    O'Connor ER; Sontheimer H; Ransom BR
    J Neurophysiol; 1994 Dec; 72(6):2580-9. PubMed ID: 7897475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport mechanisms for vitamin C in the JAR human placental choriocarcinoma cell line.
    Prasad PD; Huang W; Wang H; Leibach FH; Ganapathy V
    Biochim Biophys Acta; 1998 Feb; 1369(1):141-51. PubMed ID: 9528682
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Astroglial uptake is modulated by extracellular K+.
    Cummins CJ; Glover RA; Sellinger OZ
    J Neurochem; 1979 Sep; 33(3):779-85. PubMed ID: 479891
    [No Abstract]   [Full Text] [Related]  

  • 57. Electrogenic nature of rat sodium-dependent multivitamin transport.
    Prasad PD; Srinivas SR; Wang H; Leibach FH; Devoe LD; Ganapathy V
    Biochem Biophys Res Commun; 2000 Apr; 270(3):836-40. PubMed ID: 10772912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short-term stimulation of Na+-dependent amino acid transport by dibutyryl cyclic AMP in hepatocytes. Characteristics and partial mechanism.
    Moule SK; Bradford NM; McGivan JD
    Biochem J; 1987 Feb; 241(3):737-43. PubMed ID: 3036071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrogenic transport of 5-oxoproline in rabbit renal brush-border membrane vesicles. Effect of intravesicular potassium.
    Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1983 Jul; 732(1):32-40. PubMed ID: 6871198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.