These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1711164)

  • 61. Influence of (DL)-propranolol and Ca2+ on membrane potential and amino acid transport in Ehrlich ascites tumor cells.
    Pershadsingh HA; Johnstone RM; Laris PC
    Biochim Biophys Acta; 1978 May; 509(2):360-73. PubMed ID: 26402
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells.
    Colombini M; Johnstone RM
    J Membr Biol; 1974; 18(3-4):315-34. PubMed ID: 4138476
    [No Abstract]   [Full Text] [Related]  

  • 63. Na+-linked active transport of ascorbate into cultured bovine retinal pigment epithelial cells: heterologous inhibition by glucose.
    Khatami M
    Membr Biochem; 1987-1988; 7(2):115-30. PubMed ID: 3331406
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of ATP on Na+ transport and membrane potential in inside-out renal basolateral vesicles.
    Boumendil-Podevin EF; Podevin RA
    Biochim Biophys Acta; 1983 Feb; 728(1):39-49. PubMed ID: 6830772
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of ascorbate on Na(+)-independent and Na(+)-dependent uptake of [3H]norepinephrine by rat primary astrocyte cultures from neonatal rat cerebral cortex.
    Kimelberg HK; Goderie SK
    Brain Res; 1993 Jan; 602(1):41-4. PubMed ID: 8448657
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes.
    Wilson JX; Dragan M
    Free Radic Biol Med; 2005 Oct; 39(8):990-8. PubMed ID: 16198226
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: experimental observations and theoretical considerations.
    Blaustein MP; King AC
    J Membr Biol; 1976 Dec; 30(2):153-73. PubMed ID: 1011247
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 69. SITS-inhibitable Cl- transport and Na+-dependent H+ production in primary astroglial cultures.
    Kimelberg HK; Biddlecome S; Bourke RS
    Brain Res; 1979 Sep; 173(1):111-24. PubMed ID: 39659
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The modification of the unidirectional calcium fluxes of sarcoplasmic reticulum vesicles by monovlent cation ionophroes.
    Louis CF; Nash-Adler PA; Fudyma G; Shigekawa M; Katz AM
    Biochim Biophys Acta; 1980 Jul; 599(2):610-22. PubMed ID: 6157411
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ionic requirements for taurocholate transport in rat liver plasma membrane vesicles.
    Simion FA; Fleischer B; Fleischer S
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):507-15. PubMed ID: 6537434
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of electrogenic Na/K pump in rat neostriatal neurons.
    Munakata M; Fujimoto M; Jin YH; Akaike N
    Brain Res; 1998 Aug; 800(2):282-93. PubMed ID: 9685682
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Proline transport by synaptosomal membrane vesicles isolated from rat brain: energetics and inhibition by free fatty acids.
    Rhoads DE; Peterson NA; Raghupathy E
    Biochemistry; 1982 Sep; 21(19):4782-7. PubMed ID: 7138827
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Na-K-Cl cotransport in nystatin-treated tracheal cells: regulation by isoproterenol, apical UTP, and [Cl]i.
    Haas M; McBrayer DG
    Am J Physiol; 1994 May; 266(5 Pt 1):C1440-52. PubMed ID: 8203506
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantitation of corneal endothelial potentials using a carbocyanine dye.
    Graves C; Sachs G
    Biochim Biophys Acta; 1982 Feb; 685(1):27-31. PubMed ID: 6977376
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sodium dependence of carnitine transport in isolated perfused adult rat hearts.
    Vary TC; Neely JR
    Am J Physiol; 1983 Feb; 244(2):H247-52. PubMed ID: 6186150
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Active transport of taurine in rabbit jejunal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G65-72. PubMed ID: 2750911
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sodium-dependent transport of riboflavin in brush border membrane vesicles of rat small intestine is an electrogenic process.
    Daniel H; Rehner GI
    J Nutr; 1992 Jul; 122(7):1454-61. PubMed ID: 1619472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.