BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 17112243)

  • 1. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles.
    Liu H; Papa E; Gramatica P
    Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H; Papa E; Walker JD; Gramatica P
    J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A QSAR study of environmental estrogens based on a novel variable selection method.
    Yi Z; Zhang A
    Molecules; 2012 May; 17(5):6126-45. PubMed ID: 22614865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.
    Kovalishyn VV; Kholodovych V; Tetko IV; Welsh WJ
    J Mol Graph Model; 2007 Sep; 26(2):591-4. PubMed ID: 17433745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays.
    Liu H; Papa E; Gramatica P
    Chemosphere; 2008 Feb; 70(10):1889-97. PubMed ID: 17884132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction.
    Gramatica P; Giani E; Papa E
    J Mol Graph Model; 2007 Mar; 25(6):755-66. PubMed ID: 16890002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds.
    Asikainen AH; Ruuskanen J; Tuppurainen KA
    SAR QSAR Environ Res; 2004 Feb; 15(1):19-32. PubMed ID: 15113066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.
    Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME
    Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.
    Pérez-Garrido A; Morales Helguera A; Abellán Guillén A; Cordeiro MN; Garrido Escudero A
    Bioorg Med Chem; 2009 Jan; 17(2):896-904. PubMed ID: 19056282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants.
    Papa E; Kovarich S; Gramatica P
    Chem Res Toxicol; 2010 May; 23(5):946-54. PubMed ID: 20408563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling for screening environmental chemicals for estrogenicity: use of the toxicant-target approach.
    Rabinowitz JR; Little SB; Laws SC; Goldsmith MR
    Chem Res Toxicol; 2009 Sep; 22(9):1594-602. PubMed ID: 19715353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the reliability of a QSAR model's predictions.
    He L; Jurs PC
    J Mol Graph Model; 2005 Jun; 23(6):503-23. PubMed ID: 15896992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR study of selective ligands for the thyroid hormone receptor beta.
    Liu H; Gramatica P
    Bioorg Med Chem; 2007 Aug; 15(15):5251-61. PubMed ID: 17524652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.