These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17112311)

  • 1. Funneled landscape leads to robustness of cell networks: yeast cell cycle.
    Wang J; Huang B; Xia X; Sun Z
    PLoS Comput Biol; 2006 Nov; 2(11):e147. PubMed ID: 17112311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Funneled landscape leads to robustness of cellular networks: MAPK signal transduction.
    Wang J; Huang B; Xia X; Sun Z
    Biophys J; 2006 Sep; 91(5):L54-6. PubMed ID: 16815898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying robustness and dissipation cost of yeast cell cycle network: the funneled energy landscape perspectives.
    Han B; Wang J
    Biophys J; 2007 Jun; 92(11):3755-63. PubMed ID: 17350995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness and dissipation of mitogen-activated protein kinases signal transduction network: underlying funneled landscape against stochastic fluctuations.
    Wang J; Zhang K; Wang E
    J Chem Phys; 2008 Oct; 129(13):135101. PubMed ID: 19045124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network.
    Lau KY; Ganguli S; Tang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051907. PubMed ID: 17677098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic noise, dissipation cost, and robustness of cellular networks: the underlying energy landscape of MAPK signal transduction.
    Lapidus S; Han B; Wang J
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6039-44. PubMed ID: 18420822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representing perturbed dynamics in biological network models.
    Stoll G; Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011917. PubMed ID: 17677504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of Boolean dynamics under knockouts.
    Boldhaus G; Bertschinger N; Rauh J; Olbrich E; Klemm K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021916. PubMed ID: 20866846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell size at S phase initiation: an emergent property of the G1/S network.
    Barberis M; Klipp E; Vanoni M; Alberghina L
    PLoS Comput Biol; 2007 Apr; 3(4):e64. PubMed ID: 17432928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M; Hörnquist M; Björkegren J; Tegnér J
    IET Syst Biol; 2009 Jul; 3(4):219-28. PubMed ID: 19640161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of complex regulatory networks.
    Stelling J; Gilles ED
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):172-9. PubMed ID: 15473069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY; Huang CW; Kao KC; Lai PY
    Gene; 2013 Apr; 518(1):35-41. PubMed ID: 23274654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.
    Stoll G; Rougemont J; Naef F
    Bioinformatics; 2006 Oct; 22(20):2539-46. PubMed ID: 16895923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness and topology of the yeast cell cycle Boolean network.
    Lee WB; Huang JY
    FEBS Lett; 2009 Mar; 583(5):927-32. PubMed ID: 19302794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle.
    Luo X; Xu L; Han B; Wang J
    PLoS Comput Biol; 2017 Sep; 13(9):e1005710. PubMed ID: 28892489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE; Mjolsness E; Wold BJ
    PLoS Comput Biol; 2006 Dec; 2(12):e169. PubMed ID: 17194216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering under uncertainty--II: analysis of yeast metabolism.
    Wang L; Hatzimanikatis V
    Metab Eng; 2006 Mar; 8(2):142-59. PubMed ID: 16413809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae.
    Cokus S; Rose S; Haynor D; Grønbech-Jensen N; Pellegrini M
    BMC Bioinformatics; 2006 Aug; 7():381. PubMed ID: 16914048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.