BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17112319)

  • 1. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo.
    Morris EJ; Michaud WA; Ji JY; Moon NS; Rocco JW; Dyson NJ
    PLoS Genet; 2006 Nov; 2(11):e196. PubMed ID: 17112319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2.
    Stevaux O; Dimova D; Frolov MV; Taylor-Harding B; Morris E; Dyson N
    EMBO J; 2002 Sep; 21(18):4927-37. PubMed ID: 12234932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptosis inhibitor-5 overexpression is associated with tumor progression and poor prognosis in patients with cervical cancer.
    Cho H; Chung JY; Song KH; Noh KH; Kim BW; Chung EJ; Ylaya K; Kim JH; Kim TW; Hewitt SM; Kim JH
    BMC Cancer; 2014 Jul; 14():545. PubMed ID: 25070070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E2F function in muscle growth is necessary and sufficient for viability in Drosophila.
    Zappia MP; Frolov MV
    Nat Commun; 2016 Jan; 7():10509. PubMed ID: 26823289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate.
    Abbas H; Derkaoui DK; Jeammet L; Adicéam E; Tiollier J; Sicard H; Braun T; Poyet JL
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38275765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Author Correction: E2F1 is crucial for E2F-dependent apoptosis.
    Denchi EL; Helin K
    EMBO Rep; 2024 Jun; ():. PubMed ID: 38877172
    [No Abstract]   [Full Text] [Related]  

  • 7. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition.
    Garcia-Jove Navarro M; Basset C; Arcondéguy T; Touriol C; Perez G; Prats H; Lacazette E
    PLoS One; 2013; 8(8):e71443. PubMed ID: 23940755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules.
    Han BG; Kim KH; Lee SJ; Jeong KC; Cho JW; Noh KH; Kim TW; Kim SJ; Yoon HJ; Suh SW; Lee S; Lee BI
    J Biol Chem; 2012 Mar; 287(14):10727-37. PubMed ID: 22334682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antiapoptotic protein AAC-11 interacts with and regulates Acinus-mediated DNA fragmentation.
    Rigou P; Piddubnyak V; Faye A; Rain JC; Michel L; Calvo F; Poyet JL
    EMBO J; 2009 Jun; 28(11):1576-88. PubMed ID: 19387494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Drosophila retinoblastoma protein instability element in cell growth and proliferation.
    Elenbaas JS; Mouawad R; Henry RW; Arnosti DN; Payankaulam S
    Cell Cycle; 2015; 14(4):589-97. PubMed ID: 25496208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The components of Drosophila histone chaperone dCAF-1 are required for the cell death phenotype associated with rbf1 mutation.
    Collins H; Moon NS
    G3 (Bethesda); 2013 Oct; 3(10):1639-47. PubMed ID: 23893745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting AAC-11 in cancer therapy.
    Faye A; Poyet JL
    Expert Opin Ther Targets; 2010 Jan; 14(1):57-65. PubMed ID: 20001210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal.
    Tewari M; Yu M; Ross B; Dean C; Giordano A; Rubin R
    Cancer Res; 1997 Sep; 57(18):4063-9. PubMed ID: 9307294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).
    Li D; Liu Y; Li H; Peng JJ; Tan Y; Zou Q; Song XF; Du M; Yang ZH; Tan Y; Zhou JJ; Xu T; Fu ZQ; Feng JQ; Cheng P; chen T; Wei D; Su XM; Liu HY; Qi ZC; Tang LJ; Wang T; Guo X; Hu YH; Zhang T
    FEBS Lett; 2015 Jan; 589(1):68-76. PubMed ID: 25433291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes.
    Korenjak M; Kwon E; Morris RT; Anderssen E; Amzallag A; Ramaswamy S; Dyson NJ
    Nucleic Acids Res; 2014 Aug; 42(14):8939-53. PubMed ID: 25053843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated stability and activity control of the Drosophila Rbf1 retinoblastoma protein.
    Zhang L; Wei Y; Pushel I; Heinze K; Elenbaas J; Henry RW; Arnosti DN
    J Biol Chem; 2014 Sep; 289(36):24863-73. PubMed ID: 25049232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. API5 confers tumoral immune escape through FGF2-dependent cell survival pathway.
    Noh KH; Kim SH; Kim JH; Song KH; Lee YH; Kang TH; Han HD; Sood AK; Ng J; Kim K; Sonn CH; Kumar V; Yee C; Lee KM; Kim TW
    Cancer Res; 2014 Jul; 74(13):3556-66. PubMed ID: 24769442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capicua regulates proliferation and survival of RB-deficient cells in Drosophila.
    Krivy K; Bradley-Gill MR; Moon NS
    Biol Open; 2013 Feb; 2(2):183-90. PubMed ID: 23429853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rb deficiency during Drosophila eye development deregulates EMC, causing defects in the development of photoreceptors and cone cells.
    Popova MK; He W; Korenjak M; Dyson NJ; Moon NS
    J Cell Sci; 2011 Dec; 124(Pt 24):4203-12. PubMed ID: 22193959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuberous sclerosis complex 1 regulates dE2F1 expression during development and cooperates with RBF1 to control proliferation and survival.
    Hsieh TC; Nicolay BN; Frolov MV; Moon NS
    PLoS Genet; 2010 Aug; 6(8):e1001071. PubMed ID: 20808898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.