BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17112476)

  • 1. Can chicken and human PrPs possess SOD-like activity after beta-cleavage?
    Stańczak P; Kozlowski H
    Biochem Biophys Res Commun; 2007 Jan; 352(1):198-202. PubMed ID: 17112476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and stability of the CuII complexes with tandem repeats of the chicken prion.
    Stanczak P; Valensin D; Juszczyk P; Grzonka Z; Migliorini C; Molteni E; Valensin G; Gaggelli E; Kozlowski H
    Biochemistry; 2005 Oct; 44(39):12940-54. PubMed ID: 16185063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The whole hexapeptide repeats domain from avian PrP displays untypical hallmarks in aspect of the Cu2+ complexes formation.
    Stańczak P; Juszczyk P; Grzonka Z; Kozłowski H
    FEBS Lett; 2007 Sep; 581(23):4544-8. PubMed ID: 17803992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper(II) complexes with an avian prion N-terminal region and their potential SOD-like activity.
    La Mendola D; Bonomo RP; Caminati S; Di Natale G; Emmi SS; Hansson O; Maccarrone G; Pappalardo G; Pietropaolo A; Rizzarelli E
    J Inorg Biochem; 2009 Feb; 103(2):195-204. PubMed ID: 19019452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper(II) coordination outside the tandem repeat region of an unstructured domain of chicken prion protein.
    Gralka E; Valensin D; Gajda K; Bacco D; Szyrwiel L; Remelli M; Valensin G; Kamasz W; Baranska-Rybak W; Kozłowski H
    Mol Biosyst; 2009 May; 5(5):497-510. PubMed ID: 19381364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein.
    Hornshaw MP; McDermott JR; Candy JM
    Biochem Biophys Res Commun; 1995 Feb; 207(2):621-9. PubMed ID: 7864852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the intra- and inter-repeat copper binding modes within the N-terminal region of "prion related protein" (PrP-rel-2) of zebrafish.
    Gaggelli E; Jankowska E; Kozlowski H; Marcinkowska A; Migliorini C; Stanczak P; Valensin D; Valensin G
    J Phys Chem B; 2008 Nov; 112(47):15140-50. PubMed ID: 18942875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake.
    Miura T; Sasaki S; Toyama A; Takeuchi H
    Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contribution of superoxide dismutase activity by prion protein in vivo.
    Wong BS; Pan T; Liu T; Li R; Gambetti P; Sy MS
    Biochem Biophys Res Commun; 2000 Jun; 273(1):136-9. PubMed ID: 10873575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal prion protein has an activity like that of superoxide dismutase.
    Brown DR; Wong BS; Hafiz F; Clive C; Haswell SJ; Jones IM
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):1-5. PubMed ID: 10548526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the human and chicken prion protein copper binding regions at pH 6.5.
    Redecke L; Meyer-Klaucke W; Koker M; Clos J; Georgieva D; Genov N; Echner H; Kalbacher H; Perbandt M; Bredehorst R; Voelter W; Betzel C
    J Biol Chem; 2005 Apr; 280(14):13987-92. PubMed ID: 15684434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of a copper(II)-binding helix-turn-helix chimera: the prion octarepeat motif in a new context.
    Shields SB; Franklin SJ
    Biochemistry; 2004 Dec; 43(51):16086-91. PubMed ID: 15610003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges.
    González-Iglesias R; Pajares MA; Ocal C; Espinosa JC; Oesch B; Gasset M
    J Mol Biol; 2002 May; 319(2):527-40. PubMed ID: 12051926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper binding to chicken and human prion protein amylodogenic regions: differences and similarities revealed by Ni2+ as a diamagnetic probe.
    Valensin D; Gajda K; Gralka E; Valensin G; Kamysz W; Kozlowski H
    J Inorg Biochem; 2010 Jan; 104(1):71-8. PubMed ID: 19883942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of Cu2+ ions with chicken prion tandem repeats.
    Stańczak P; Łuczkowski M; Juszczyk P; Grzonka Z; Kozłowski H
    Dalton Trans; 2004 Jul; (14):2102-7. PubMed ID: 15249945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology.
    Legleiter LR; Spears JW; Liu HC
    J Anim Sci; 2008 Nov; 86(11):3069-78. PubMed ID: 18599661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides.
    Hornshaw MP; McDermott JR; Candy JM; Lakey JH
    Biochem Biophys Res Commun; 1995 Sep; 214(3):993-9. PubMed ID: 7575574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA cleavage mediated by copper superoxide dismutase via two pathways.
    Han Y; Shen T; Jiang W; Xia Q; Liu C
    J Inorg Biochem; 2007 Feb; 101(2):214-24. PubMed ID: 17070914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal complexes with superoxide dismutase-like activity as candidates for anti-prion drug.
    Fukuuchi T; Doh-Ura K; Yoshihara S; Ohta S
    Bioorg Med Chem Lett; 2006 Dec; 16(23):5982-7. PubMed ID: 16987659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the affinity and selectivity of avian prion hexarepeat peptides for physiological divalent metal ions.
    Shields SB; Franklin SJ
    J Inorg Biochem; 2007 May; 101(5):783-8. PubMed ID: 17346797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.