These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17112531)

  • 1. Mechanics and deformation of the nucleus in micropipette aspiration experiment.
    Vaziri A; Mofrad MR
    J Biomech; 2007; 40(9):2053-62. PubMed ID: 17112531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties of the nucleus studied by micropipette aspiration.
    Rowat AC
    Methods Mol Biol; 2009; 464():3-12. PubMed ID: 18951176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
    Deguchi S; Maeda K; Ohashi T; Sato M
    J Biomech; 2005 Sep; 38(9):1751-9. PubMed ID: 16005465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A power-law rheology-based finite element model for single cell deformation.
    Zhou EH; Xu F; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1075-84. PubMed ID: 22307682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanical properties of chondrocytes isolated from normal articular cartilage: experiment with rabbit knees].
    Wang XH; Wei XC; Zhang QY; Chen WY
    Zhonghua Yi Xue Za Zhi; 2007 Apr; 87(13):916-20. PubMed ID: 17650406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation.
    Wu ZZ; Zhang G; Long M; Wang HB; Song GB; Cai SX
    Biorheology; 2000; 37(4):279-90. PubMed ID: 11145074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [An experimental study of cellular mechanic properties of intestinal epithelial cells by micropipette aspiration].
    Chen J; Xiao G; Wu Z; Qin J; Li Z
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2003 Jan; 34(1):34-5, 39. PubMed ID: 15600173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow flow of passive neutrophils and sequestered nucleus into micropipette.
    Kaleridis V; Athanassiou G; Deligianni D; Missirlis Y
    Clin Hemorheol Microcirc; 2010; 45(1):53-65. PubMed ID: 20571230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanobiological investigation of platelets.
    McGrath B; Mealing G; Labrosse MR
    Biomech Model Mechanobiol; 2011 Jul; 10(4):473-84. PubMed ID: 20706764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of leukocytes.
    Chien S; Schmid-Schönbein GW; Sung KL; Schmalzer EA; Skalak R
    Kroc Found Ser; 1984; 16():19-51. PubMed ID: 6371192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power-law rheology analysis of cells undergoing micropipette aspiration.
    Zhou EH; Quek ST; Lim CT
    Biomech Model Mechanobiol; 2010 Oct; 9(5):563-72. PubMed ID: 20179987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2002 Oct; 124(5):586-95. PubMed ID: 12405602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells.
    Reynolds NH; Ronan W; Dowling EP; Owens P; McMeeking RM; McGarry JP
    Biomaterials; 2014 Apr; 35(13):4015-25. PubMed ID: 24529900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated micropipette aspiration of single cells.
    Shojaei-Baghini E; Zheng Y; Sun Y
    Ann Biomed Eng; 2013 Jun; 41(6):1208-16. PubMed ID: 23508635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new viscoelastic model for granulocytes].
    Qin T; Yang R; Jiang J; Wu Y; Cai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Mar; 16(1):71-6. PubMed ID: 12553281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Poisson's ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration (Trickey et al., Journal of Biomechanics, 39 (2006) 78-87.
    Schachar RA
    J Biomech; 2006; 39(12):2344; author reply 2344-5. PubMed ID: 16884728
    [No Abstract]   [Full Text] [Related]  

  • 20. In situ mechanical properties of the chondrocyte cytoplasm and nucleus.
    Ofek G; Natoli RM; Athanasiou KA
    J Biomech; 2009 May; 42(7):873-7. PubMed ID: 19261283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.