BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17112549)

  • 1. Bilateral processing in chemical synapses with electrical 'ephaptic' feedback: a theoretical model.
    Savtchenko LP
    Math Biosci; 2007 May; 207(1):113-37. PubMed ID: 17112549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal excitability: voltage-dependent currents and synaptic transmission.
    Rutecki PA
    J Clin Neurophysiol; 1992 Apr; 9(2):195-211. PubMed ID: 1375602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The morphology of excitatory central synapses: from structure to function.
    Rollenhagen A; Lübke JH
    Cell Tissue Res; 2006 Nov; 326(2):221-37. PubMed ID: 16932936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Model of electrical feedback mechanisms through chemical synapses].
    Byzov AL; Golubtsov KV
    Biofizika; 1977; 22(6):1081-6. PubMed ID: 201302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing of neurotransmission at fast synapses in the mammalian brain.
    Sabatini BL; Regehr WG
    Nature; 1996 Nov; 384(6605):170-2. PubMed ID: 8906792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.
    Clarke SG; Scarnati MS; Paradiso KG
    J Neurosci; 2016 Nov; 36(45):11559-11572. PubMed ID: 27911759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin modulates transmitter release at central Lymnaea synapses through a G-protein-coupled and cAMP-mediated pathway.
    McCamphill PK; Dunn TW; Syed NI
    Eur J Neurosci; 2008 Apr; 27(8):2033-42. PubMed ID: 18412624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic activity modulates presynaptic excitability.
    Nick TA; Ribera AB
    Nat Neurosci; 2000 Feb; 3(2):142-9. PubMed ID: 10649569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to dismantle a detonator synapse.
    Pelkey KA; McBain CJ
    Neuron; 2005 Feb; 45(3):327-9. PubMed ID: 15694316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ephaptic feedback in identified synapses of terrestrial snails].
    Bravarenko NI; Malayshev AIu; Voronin LL; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(4):565-72. PubMed ID: 15481395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel, extremely fast, feedback inhibition of glutamate release in the crayfish neuromuscular junction.
    Kupchik YM; Parnas H; Parnas I
    Neuroscience; 2011 Jan; 172():44-54. PubMed ID: 21034796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina.
    Kamermans M; Fahrenfort I
    Curr Opin Neurobiol; 2004 Oct; 14(5):531-41. PubMed ID: 15464885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells.
    Egger V
    Eur J Neurosci; 2008 Apr; 27(8):2066-75. PubMed ID: 18412627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for a G-protein-mediated mechanism for synaptic channel modulation.
    Soto G; Othmer HG
    Math Biosci; 2006 Apr; 200(2):188-213. PubMed ID: 16540128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca(2+) depletion.
    Rusakov DA
    Biophys J; 2001 Oct; 81(4):1947-59. PubMed ID: 11566769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic amplification of inhibitory postsynaptic potentials in a model Purkinje cell.
    Solinas SM; Maex R; De Schutter E
    Eur J Neurosci; 2006 Mar; 23(5):1207-18. PubMed ID: 16553783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Model of a neuron-regulator of the effectiveness of synaptic transmission].
    Byzov AL; Golubtsov KV
    Biofizika; 1978; 23(1):119-26. PubMed ID: 203334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using ephaptic coupling to estimate the synaptic cleft resistivity of the calyx of Held synapse.
    Sierksma MC; Borst JGG
    PLoS Comput Biol; 2021 Oct; 17(10):e1009527. PubMed ID: 34699519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse.
    Srinivasan G; Kim JH; von Gersdorff H
    J Neurophysiol; 2008 Apr; 99(4):1810-24. PubMed ID: 18256166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal.
    Sakaba T
    Neuron; 2008 Feb; 57(3):406-19. PubMed ID: 18255033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.