BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17112664)

  • 1. Vagal afferents mediate the feeding response to mercaptoacetate but not to the beta (3) adrenergic receptor agonist CL 316,243.
    Brandt K; Arnold M; Geary N; Langhans W; Leonhardt M
    Neurosci Lett; 2007 Jan; 411(2):104-7. PubMed ID: 17112664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-adrenergic-mediated inhibition of feeding by mercaptoacetate in food-deprived rats.
    Brandt K; Arnold M; Geary N; Langhans W; Leonhardt M
    Pharmacol Biochem Behav; 2006 Dec; 85(4):722-7. PubMed ID: 17175014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercaptoacetate fails to block the feeding-inhibitory effect of the beta3-adrenergic receptor agonist CGP 12177A.
    Brandt K; Geary N; Langhans W; Leonhardt M
    Physiol Behav; 2006 Sep; 89(2):128-32. PubMed ID: 16872643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4.
    Labouesse MA; Stadlbauer U; Weber E; Arnold M; Langhans W; Pacheco-López G
    J Neuroendocrinol; 2012 Dec; 24(12):1505-16. PubMed ID: 22827554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subdiaphragmatic vagal deafferentation fails to block the anorectic effect of hydroxycitrate.
    Leonhardt M; Hrupka BJ; Langhans W
    Physiol Behav; 2004 Sep; 82(2-3):263-8. PubMed ID: 15276787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subdiaphragmatic vagal deafferentation fails to block feeding-suppressive effects of LPS and IL-1 beta in rats.
    Schwartz GJ; Plata-Salamán CR; Langhans W
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R1193-8. PubMed ID: 9321903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of mercaptoacetate's effects on feeding and fat metabolism by dietary medium- and long-chain triacylglycerols in rats.
    Mansouri A; Koss MD; Brandt K; Geary N; Langhans W; Leonhardt M
    Nutrition; 2008 Apr; 24(4):360-5. PubMed ID: 18234475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating.
    Langhans W; Leitner C; Arnold M
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R554-65. PubMed ID: 21148477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat.
    Arnold M; Mura A; Langhans W; Geary N
    J Neurosci; 2006 Oct; 26(43):11052-60. PubMed ID: 17065447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ketone body and the inhibition of fatty acid oxidation on the food intake of the chick.
    Sashihara K; Miyamoto M; Ohgushi A; Denbow DM; Furuse M
    Br Poult Sci; 2001 Jul; 42(3):405-8. PubMed ID: 11469564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraportal mercaptoacetate infusion increases afferent activity in the common hepatic vagus branch of the rat.
    Lutz TA; Diener M; Scharrer E
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R442-5. PubMed ID: 9249583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats.
    Mansouri A; Aja S; Moran TH; Ronnett G; Kuhajda FP; Arnold M; Geary N; Langhans W; Leonhardt M
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R799-805. PubMed ID: 18667714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.
    Shen L; Wang DQ; Lo CC; Arnold M; Tso P; Woods SC; Liu M
    Physiol Behav; 2015 Dec; 152(Pt A):62-7. PubMed ID: 26384952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin.
    Moran TH; Baldessarini AR; Salorio CF; Lowery T; Schwartz GJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1245-51. PubMed ID: 9140026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subdiaphragmatic vagotomy does not block intraperitoneal lipopolysaccharide-induced fever.
    Hansen MK; Daniels S; Goehler LE; Gaykema RP; Maier SF; Watkins LR
    Auton Neurosci; 2000 Dec; 85(1-3):83-7. PubMed ID: 11189031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of hepatic and celiac vagal afferents to intraportal mercaptoacetate in rats fed a high-fat or low-fat diet.
    Randich A; Spraggins DS; Meller ST; Kelm GR; Cox JE
    Neuroreport; 2002 Apr; 13(5):675-9. PubMed ID: 11973469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy.
    Wickbom J; Herrington MK; Permert J; Jansson A; Arnelo U
    Regul Pept; 2008 Jun; 148(1-3):21-5. PubMed ID: 18456348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of food intake by GI fatty acid infusions: roles of celiac vagal afferents and cholecystokinin.
    Cox JE; Kelm GR; Meller ST; Randich A
    Physiol Behav; 2004 Aug; 82(1):27-33. PubMed ID: 15234586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats.
    Ogawa N; Yamaguchi H; Shimbara T; Toshinai K; Kakutani M; Yonemori F; Nakazato M
    Neurosci Lett; 2008 Mar; 433(1):38-42. PubMed ID: 18248897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Mercaptoacetate does not stimulate chow intake in periweanling rats.
    Swithers SE; Doerflinger A; Mowery T
    Physiol Behav; 2004 Aug; 82(1):3-9. PubMed ID: 15234582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.