These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17112949)

  • 41. In vivo virtual histology of mouse embryogenesis by ultrasound biomicroscopy and magnetic resonance imaging.
    Pallares P; Fernandez-Valle ME; Gonzalez-Bulnes A
    Reprod Fertil Dev; 2009; 21(2):283-92. PubMed ID: 19210919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of ultrasound imaging for early diagnosis of pregnancy and determination of litter size in the mouse.
    Pallares P; Gonzalez-Bulnes A
    Lab Anim; 2009 Jan; 43(1):91-5. PubMed ID: 19001063
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative SNR for high-throughput mouse embryo MR microscopy.
    Zhang X; Schneider JE; Portnoy S; Bhattacharya S; Henkelman RM
    Magn Reson Med; 2010 Jun; 63(6):1703-7. PubMed ID: 20512875
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time 3D laparoscopic ultrasonography.
    Light ED; Idriss SF; Sullivan KF; Wolf PD; Smith SW
    Ultrason Imaging; 2005 Jul; 27(3):129-44. PubMed ID: 16550704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetic resonance microscopy of chemically fixed human embryos at high spatial resolution.
    Otake Y; Handa S; Kose K; Shiota K; Yamada S; Uwabe C
    Magn Reson Med Sci; 2015; 14(2):153-8. PubMed ID: 25740236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A two-dimensional array for B-mode and volumetric imaging with multiplexed electrostrictive elements.
    Davidsen RE; Smith SW
    Ultrason Imaging; 1997 Oct; 19(4):235-50. PubMed ID: 9651952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo imaging of cumulus-oocyte-complexes and small ovarian follicles in cattle using ultrasonic biomicroscopy.
    Pfeifer LF; Siqueira LG; Adams GP; Pierson RA; Singh J
    Anim Reprod Sci; 2012 Mar; 131(1-2):88-94. PubMed ID: 22464335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-speed, high-frequency ultrasound, in utero vector-flow imaging of mouse embryos.
    Ketterling JA; Aristizábal O; Yiu BYS; Turnbull DH; Phoon CKL; Yu ACH; Silverman RH
    Sci Rep; 2017 Nov; 7(1):16658. PubMed ID: 29192281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging.
    Bitton R; Zemp R; Yen J; Wang LV; Shung KK
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1190-7. PubMed ID: 19131292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A high-frequency, 2-D array element using thermoelastic expansion in PDMS.
    Buma T; Spisar M; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Sep; 50(9):1161-76. PubMed ID: 14561032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A 3D ultrasound scanning system for image guided liver interventions.
    Neshat H; Cool DW; Barker K; Gardi L; Kakani N; Fenster A
    Med Phys; 2013 Nov; 40(11):112903. PubMed ID: 24320470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.
    Li X; Yang J; Ding M; Yuchi M
    Biomed Mater Eng; 2015; 26 Suppl 1():S1579-85. PubMed ID: 26405923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved signal-to-noise ratio in hybrid 2-D arrays: experimental confirmation.
    Emery CD; Smith SW
    Ultrason Imaging; 1997 Apr; 19(2):93-111. PubMed ID: 9381632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An FPGA-based open platform for ultrasound biomicroscopy.
    Qiu W; Yu Y; Tsang F; Sun L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1432-42. PubMed ID: 22828839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.
    Kim J; Li S; Kasoji S; Dayton PA; Jiang X
    Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time 3-d intracranial ultrasound with an endoscopic matrix array transducer.
    Light ED; Mukundan S; Wolf PD; Smith SW
    Ultrasound Med Biol; 2007 Aug; 33(8):1277-84. PubMed ID: 17478032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward Quantitative Whole Organ Thermoacoustics With a Clinical Array Plus One Very Low-Frequency Channel Applied to Prostate Cancer Imaging.
    Patch SK; Hull D; See WA; Hanson GW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):245-55. PubMed ID: 26731749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-mode transducers for ultrasound imaging and thermal therapy.
    Owen NR; Chapelon JY; Bouchoux G; Berriet R; Fleury G; Lafon C
    Ultrasonics; 2010 Feb; 50(2):216-20. PubMed ID: 19758673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of acoustic emitted field of transducer array for ultrasound imaging.
    He Z
    Biomed Mater Eng; 2014; 24(1):1201-8. PubMed ID: 24212014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.