These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 171134)

  • 1. Nuclear binding capacity appears to limit the hepatic response to L-triiodothyronine (T3).
    Oppenheimer JH; Schwartz HL; Surks MI
    Endocr Res Commun; 1975; 2(4-5):309-25. PubMed ID: 171134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme by L-triiodothyronine. Characteristics of the response with specific nuclear thyroid hormone binding sites fully saturated.
    Oppenheimer JH; Silva E; Schwartz HL; Surks MI
    J Clin Invest; 1977 Mar; 59(3):517-27. PubMed ID: 190269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Increased liver nuclear triiodothyronine-receptors associated with mitochondrial alpha-glycerophosphate dehydrogenase activity in hyperthyroid rats (author's transl)].
    Nakamura H
    Nihon Naibunpi Gakkai Zasshi; 1979 Aug; 55(8):954-62. PubMed ID: 226425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear (amplified) relationship between nuclear occupancy by triiodothyronine and the appearance rate of hepatic alpha-glycerophosphate dehydrogenase and malic enzyme in the rat.
    Oppenheimer JH; Coulombe P; Schwartz HL; Gutfeld NW
    J Clin Invest; 1978 Apr; 61(4):987-97. PubMed ID: 207725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme to constant infusions of L-triiodothyronine in rats bearing the Walker 256 carcinoma. Evidence for divergent postreceptor regulation of the thyroid hormone response.
    Tibaldi JM; Sahnoun N; Surks MI
    J Clin Invest; 1984 Sep; 74(3):705-14. PubMed ID: 6088583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Sequential changes in the nuclear triiodothyronine receptors and mitochondrial alpha-glycerophosphate dehydrogenase activity after the administration of triiodothyronine (author's transl)].
    Nakamura H
    Nihon Naibunpi Gakkai Zasshi; 1979 Aug; 55(8):963-70. PubMed ID: 226426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroxine action on the rat liver nuclear thyroid-hormone receptors. Binding of thyroxine to the nuclear non-histone protein and induction of mitochondrial alpha-glycerophosphate dehydrogenase activity.
    Yoshimasa Y; Hamada S
    Biochem J; 1983 Feb; 210(2):331-7. PubMed ID: 6305340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nuclear 5,5,3'-triiodothyronine-binding capacity and tissue response in the liver of the neonatal rat.
    Coulombe P; Ruel J; Dussault JH
    Endocrinology; 1979 Oct; 105(4):952-9. PubMed ID: 225160
    [No Abstract]   [Full Text] [Related]  

  • 9. Response of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme to 3,5,3'-triiodothyronine in streptozotocin-diabetic rats.
    Jolin T
    Endocrinology; 1988 Jul; 123(1):248-57. PubMed ID: 3383774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triiodothyronine receptors during maturation.
    DeGroot LJ; Robertson M; Rue PA
    Endocrinology; 1977 Jun; 100(6):1511-5. PubMed ID: 192539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential changes in rat liver nuclear tri-iodothyronine receptors and mitochondrial alpha-glycerophosphate dehydrogenase activity after administration of tri-iodothyronine.
    Nakamura H; Hamada S; Imura H
    Biochem J; 1979 Aug; 182(2):377-82. PubMed ID: 228652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the metabolism and distribution of L-triiodothyronine and triiodothyroacetic acid in the rat: a possible explanation of differential hormonal potency.
    Goslings B; Schwartz HL; Dillmann W; Surks MI; Oppenheimer JH
    Endocrinology; 1976 Mar; 98(3):666-75. PubMed ID: 177267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear thyroid hormone receptors, alpha-glycerophosphate dehydrogenases, and malic enzyme in N-nitrosomethylurea-induced rat mammary tumors.
    Ruzicka FJ; Rose DP
    Cancer Res; 1983 Jul; 43(7):3150-4. PubMed ID: 6303577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in liver nuclear tri-iodothyronine receptors associated with increased deoxyribonucleic acid by long-term administration of tri-iodothyronine in thyroidectomized rats.
    Nakamura H; Hamada S; Imura H
    Biochem J; 1979 Oct; 184(1):143-8. PubMed ID: 230825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear triiodothyronine receptors and the acute inhibition of thyroid-stimulating hormone release.
    Silva JE; Larsen PR
    J Clin Invest; 1978 May; 61(5):1247-59. PubMed ID: 207733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triiodothyronine and insulin effects on malic enzyme in hypothyroid and diabetic rats.
    Ortiz-Caro J; Jolin T
    Acta Endocrinol (Copenh); 1991 May; 124(5):569-76. PubMed ID: 2028716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in hepatic mitochondrial alpha-glycerophosphate dehydrogenase activity after surgical stress in hyperthyroid rats.
    Khawaja Y; Dobnig H; Shapiro LE; Surks MI
    Endocrinology; 1990 Jul; 127(1):387-93. PubMed ID: 2361477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial binding sites for triiodothyronine.
    Greif RL; Sloane D
    Endocrinology; 1978 Nov; 103(5):1899-902. PubMed ID: 218792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tri-iodothyronine-induced increase in rat liver nuclear thyroid-hormone receptors associated with increased mitochondrial alpha-glycerophosphate dehydrogenase activity.
    Hamada S; Nakamura H; Nanno M; Imura H
    Biochem J; 1979 Aug; 182(2):371-5. PubMed ID: 228651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes decreases liver and kidney nuclear 3,5,3'-triiodothyronine receptors in rats.
    Jolin T
    Endocrinology; 1987 May; 120(5):2144-51. PubMed ID: 3552632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.