These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17113585)

  • 1. Use of high-resolution MRI for investigation of fluid flow and global permeability in a material with interconnected porosity.
    Swider P; Conroy M; Pédrono A; Ambard D; Mantell S; Søballe K; Bechtold JE
    J Biomech; 2007; 40(9):2112-8. PubMed ID: 17113585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution magnetic resonance flow imaging in a model of porous bone-implant interface.
    Conroy MJ; Pédrono A; Bechtold JE; Søballe K; Ambard D; Swider P
    Magn Reson Imaging; 2006 Jun; 24(5):657-61. PubMed ID: 16735190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.
    Abdalrahman T; Scheiner S; Hellmich C
    J Theor Biol; 2015 Jan; 365():433-44. PubMed ID: 25452137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomaterial aspects of Interpore-200 porous hydroxyapatite.
    White E; Shors EC
    Dent Clin North Am; 1986 Jan; 30(1):49-67. PubMed ID: 3514293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering.
    Guda T; Oh S; Appleford MR; Ong JL
    Int J Oral Maxillofac Implants; 2012; 27(2):288-94. PubMed ID: 22442766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes.
    Blecha LD; Rakotomanana L; Razafimahery F; Terrier A; Pioletti DP
    J Orthop Res; 2009 Aug; 27(8):1082-7. PubMed ID: 19180634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity measurements in natural porous rocks.
    Merrill MR; Jin Z
    Magn Reson Imaging; 1994; 12(2):345-8. PubMed ID: 8170336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peristaltic transport in a channel with a porous peripheral layer: model of a flow in gastrointestinal tract.
    Mishra M; Rao AR
    J Biomech; 2005 Apr; 38(4):779-89. PubMed ID: 15713299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.
    Low KW; van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2016 May; 138(5):051001. PubMed ID: 26902524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration.
    Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC
    Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis.
    Debbaut C; Vierendeels J; Casteleyn C; Cornillie P; Van Loo D; Simoens P; Van Hoorebeke L; Monbaliu D; Segers P
    J Biomech Eng; 2012 Jan; 134(1):011003. PubMed ID: 22482658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of porous media local hydrodynamical permeability using gas MRI.
    Bencsik M; Ramanathan C
    Magn Reson Imaging; 2001; 19(3-4):379-83. PubMed ID: 11445315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models.
    Sandino C; Lacroix D
    Biomech Model Mechanobiol; 2011 Jul; 10(4):565-76. PubMed ID: 20865437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants.
    Porter AE; Buckland T; Hing K; Best SM; Bonfield W
    J Biomed Mater Res A; 2006 Jul; 78(1):25-33. PubMed ID: 16596583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.
    Nganga S; Ylä-Soininmäki A; Lassila LV; Vallittu PK
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1797-804. PubMed ID: 22098879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.