BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 17113617)

  • 1. Double-layer PVDF transducer and V(z) measurement system for measuring leaky Lamb waves in a piezoelectric plate.
    Lee YC; Kuo SH
    Ultrasonics; 2007 Mar; 46(1):25-33. PubMed ID: 17113617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaky lamb waves of a piezoelectric plate subjected to conductive fluid loading: an experimental study.
    Lee YC; Kuo SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1617-26. PubMed ID: 16964912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of dispersion curves of leaky Lamb waves using a lensless line-focus transducer.
    Lee YC
    Ultrasonics; 2001 Jun; 39(4):297-306. PubMed ID: 11432440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave.
    Dahmen S; Ketata H; Ben Ghozlen MH; Hosten B
    Ultrasonics; 2010 Apr; 50(4-5):502-7. PubMed ID: 19962719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active fiber composites for the generation of Lamb waves.
    Birchmeier M; Gsell D; Juon M; Brunner AJ; Paradies R; Dual J
    Ultrasonics; 2009 Jan; 49(1):73-82. PubMed ID: 18621408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.
    Aoyagi T; Nakazawa M; Tabaru M; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1761-8. PubMed ID: 19686992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of reflected waves from the back surface of thin solid-plate specimen on velocity measurements by line-focus-beam acoustic microscopy.
    Kushibiki JI; Ohashi Y; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):274-84. PubMed ID: 18238540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Sensing scheme of minim liquid density based on Lamb-wave].
    Han T; Shi WK; Ma WF; Hou Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):172-3, 209. PubMed ID: 16104298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of circumferential Lamb waves using a line-focus poly(vinylidene fluoride) transducer and cross correlation waveform analysis.
    Lin CI; Lu Y; He C; Song G; Lee YC
    J Acoust Soc Am; 2015 Nov; 138(5):2738-43. PubMed ID: 26627750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super high electromechanical coupling and zero temperature coefficient surface acoustic wave substrates in KNbO(3) single crystal.
    Yamanouchi K; Odagawa H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):700-5. PubMed ID: 18238470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations.
    Wilm M; Khelif A; Laude V; Ballandras S
    J Acoust Soc Am; 2007 Aug; 122(2):786-93. PubMed ID: 17672629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical surface perturbation of a piezoelectric acoustic plate mode by a conductive liquid loading.
    Josse F; Shana ZA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):512-8. PubMed ID: 18267664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lift-off compensation for improved accuracy in ultrasonic lamb wave velocity measurements using electromagnetic acoustic transducers (EMATs).
    Morrison JP; Dixon S; Potter MD; Jian X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1401-4. PubMed ID: 16828139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamb waves beam deviation due to small inclination of the test structure in air-coupled ultrasonic NDT.
    Kichou HB; Chavez JA; Turo A; Salazar J; Garcia-Hernandez MJ
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1077-82. PubMed ID: 16806365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided waves propagating in a bi-layer system consisting of a piezoelectric plate and a dielectric fluid layer.
    Wu CH; Yang CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1612-8. PubMed ID: 21859580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Love wave propagation in functionally graded piezoelectric material layer.
    Du J; Jin X; Wang J; Xian K
    Ultrasonics; 2007 Mar; 46(1):13-22. PubMed ID: 17107699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the dispersions of piezoelectric plate with laser ultrasound measurement and theoretical modeling.
    Yang CH; Tsai KY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e807-11. PubMed ID: 16793091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D analysis of interaction of Lamb waves with defects in loaded steel plates.
    Kazys R; Mazeika L; Barauskas R; Raisutis R; Cicenas V; Demcenko A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1127-30. PubMed ID: 16797639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z; Jiang W; Cai M; Wright WM
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.